Skip to Content
Merck
CN
  • Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric.

Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric.

Magnetic resonance in medicine (2012-01-31)
W M Teeuwisse, W M Brink, K N Haines, A G Webb
ABSTRACT

High permittivity "dielectric pads" have been shown to increase image quality at high magnetic fields in regions of low radiofrequency transmit efficiency. This article presents a series of electromagnetic simulations to determine the effects of pad size and geometry, relative permittivity value, as well as thickness on the transmit radiofrequency fields for neuroimaging at 7 T. For a 5-mm thick pad, there is virtually no effect on the transmit field for relative permittivity values lower than ∼90. Significant improvements are found for values between 90 and ∼180. If the relative permittivity is increased above ∼180 then areas of very low transmit efficiency are produced. For a 1-cm thick pad, the corresponding numbers are ∼60 and ∼120, respectively. Based upon the findings, a new material (barium titanate, relative permittivity ∼150) is used to produce thin (∼5 mm) dielectric pads which can easily be placed within a standard receive head array. Experimental measurements of transmit sensitivities, as well as acquisition of T(2) - and T 2*-weighted images show the promise of this approach.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Barium titanate(IV), powder, <3 μm, 99%
Sigma-Aldrich
Barium titanate(IV), powder, <2 μm, 99.5% trace metals basis
Sigma-Aldrich
Barium titanate(IV), nanopowder (cubic crystalline phase), <100 nm particle size (BET), ≥99% trace metals basis