Merck
CN
  • Enhancement of visible-light-driven photoresponse of Mn/ZnO system: photogenerated charge transfer properties and photocatalytic activity.

Enhancement of visible-light-driven photoresponse of Mn/ZnO system: photogenerated charge transfer properties and photocatalytic activity.

Nanoscale (2012-09-07)
Yongchun Lu, Yanhong Lin, Tengfeng Xie, Shoulei Shi, Haimei Fan, Dejun Wang
ABSTRACT

A visible-light-active ZnO photocatalyst system in the presence of manganese ions (Mn/ZnO) was prepared via a simple and rapid approach. XRD, XPS, Raman scattering and UV-Vis DRS confirmed the manganese exists in multivalent forms (Mn(3+)/Mn(2+)) in the ZnO lattice, furthermore, ZnO light absorption is extended to the visible region. The photocatalytic activities of the catalysts were evaluated by measuring the photodegrading efficiency of 2,4-dichlorophenol (DCP) under visible light irradiation. With an optimal molar ratio of 5% in Mn/ZnO the highest rate photodegradation was achieved under the experimental conditions. We have characterized the separation and transfer behavior of the photogenerated charges in the visible region by means of surface photovoltage (SPV), surface photocurrent (SPC) and transient photovoltage (TPV) techniques. Based on the comprehensive investigation of the photovoltaic properties of Mn/ZnO photocatalyst, we illustrate the behavior of photogenerated charges have distinct effects on the photocatalytic activity. It is demonstrated that the incorporation of multivalent Mn in ZnO promoted the separation of photogenerated charges, inhibited the recombination of photogenerated carriers, and thus prolonged the charges lifetime to participate in the photocatalytic reaction, resulting in highly efficient photocatalytic activity, which is attributed to the formation of a strong electronic interaction between the multivalent Mn and ZnO.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,4-Dichlorophenol, 99%