Skip to Content
Merck
CN
  • Toxicity evaluation of two typical surfactants to Dunaliella bardawil, an environmentally tolerant alga.

Toxicity evaluation of two typical surfactants to Dunaliella bardawil, an environmentally tolerant alga.

Environmental toxicology and chemistry (2012-11-21)
Xiao-Ying Qv, Jian-Guo Jiang
ABSTRACT

Sodium dodecyl benzene sulfonate (SDBS) and cetyl trimethyl ammonium chloride (CTAC) are two kinds of surfactants widely applied in various industries. The tremendous direct discharge of these surfactants into natural waters has posed a significant threat to ecosystems. Dunaliella bardawil was employed in the present research to test the toxic effects of SDBS, CTAC, and their mixture on cell growth, cellular morphology, β-carotene accumulation, and enzymatic activities of superoxide dismutase (SOD) and catalase (CAT). The results showed that SDBS at 200, 550, 900, 1,350, 1,800, and 2,400 mg/L and CTAC at 0.4, 0.7, 1.0, 1.3, 2.8, and 3.5 mg/L inhibited algal growth and β-carotene accumulation, both of which declined and then increased. In particular, CTAC (median inhibitory concentration at 10 days [IC50](10 d)  = 2.8 ± 1.49 mg/L) was more hazardous than SDBS (IC50(10 d)  = 2,044 ± 637.3 mg/L). The additive index (AI) calculated from carotene content data was (-4.10, -1.67) < 0, indicating an antagonistic effect between SDBS and CTAC. Algae cultivated at level 6 of the binary system showed hormesis due to the mitigated toxicity; SDBS at 2,400 mg/L, CTAC at 3.5 mg/L, and combined surfactants at level 6 exerted lethal effects on D. bardawil. Both SOD and CAT activities showed similar associations with varied concentrations of surfactants: SOD was significantly promoted by 550 to 1,800 mg/L SDBS, 0.7 to 1.3 mg/L CTAC, and mixtures at levels 2 to 4; CAT was clearly promoted by 900 mg/L SDBS, 0.4 to 1.3 mg/L CTAC, and mixtures at levels 2 to 4.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexadecyltrimethylammonium chloride, ≥98.0% (NT)
Sigma-Aldrich
Cetyltrimethylammonium chloride solution, 25 wt. % in H2O
Sigma-Aldrich
Cetyltrimethylammonium hydrogensulfate, 99%
Sigma-Aldrich
Hexadecyltrimethylammonium hydroxide solution, 10 wt. % in H2O
Sigma-Aldrich
Hexadecyltrimethylammonium hydroxide solution, ~25% in methanol (T)
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, Molecular Biology, ≥99%
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioXtra, ≥99%
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, ≥98%
Sigma-Aldrich
Sodium dodecylbenzenesulfonate, technical grade
Sigma-Aldrich
Dodecylbenzenesulfonic acid solution, 70 wt. % in isopropanol
Supelco
Hexadecyltrimethylammonium bromide, suitable for ion pair chromatography, LiChropur
Supelco
Sodium dodecylbenzenesulfonate, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, Vetec, reagent grade, 96%
Supelco
Hexadecyltrimethylammonium bisulfate, suitable for ion pair chromatography, LiChropur, ≥99.0% (T)
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, ≥96.0% (AT)
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioUltra, Molecular Biology, ≥99.0% (AT)
Supelco
Hexadecyltrimethylammonium bromide, analytical standard