Skip to Content
Merck
CN
  • Mixed-valence metal oxide nanoparticles as electrochemical half-cells: substituting the Ag/AgCl of reference electrodes by CeO(2-x) nanoparticles.

Mixed-valence metal oxide nanoparticles as electrochemical half-cells: substituting the Ag/AgCl of reference electrodes by CeO(2-x) nanoparticles.

Journal of the American Chemical Society (2012-11-23)
Rajaram K Nagarale, Udo Hoss, Adam Heller
ABSTRACT

Cations of mixed valence at surfaces of metal oxide nanoparticles constitute electrochemical half-cells, with potentials intermediate between those of the dissolved cations and those in the solid. When only cations at surfaces of the particles are electrochemically active, the ratio of electrochemically active/all cations is ~0.1 for 15 nm diameter CeO(2-x) particles. CeO(2-x) nanoparticle-loaded hydrogel films on printed carbon and on sputtered gold constitute reference electrodes having a redox potential similar to that of Ag/AgCl in physiological (0.14 M) saline solutions. In vitro the characteristics of potentially subcutaneously implantable glucose monitoring sensors made with CeO(2-x) nanoparticle reference electrodes are undistinguishable from those of sensors made with Ag/AgCl reference electrodes. Cerium is 900 times more abundant than silver, and commercially produced CeO(2-x) nanoparticle solutions are available at prices well below those of the Ag/AgCl pastes used in the annual manufacture of ~10(9) reference electrodes of glucose monitoring strips for diabetes management.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Silver chloride, 99.999% trace metals basis
Sigma-Aldrich
Silver chloride, AnhydroBeads, −10 mesh, 99.998% trace metals basis
Sigma-Aldrich
Silver chloride, ReagentPlus®, 99%
Sigma-Aldrich
Cerium(IV) oxide, dispersion, nanoparticles, <25 nm particle size, 10 wt. % in H2O
Sigma-Aldrich
Cerium(IV) oxide, powder, 99.995% trace metals basis
Sigma-Aldrich
Cerium(IV) oxide, nanopowder, <50 nm particle size (BET), 99.95% trace rare earth metals basis
Sigma-Aldrich
Cerium(IV) oxide, ≥99.0%
Sigma-Aldrich
Cerium(IV) oxide, dispersion, 20 wt. % colloidal dispersion in 2.5% acetic acid, 30-50 nm avg. part. size
Sigma-Aldrich
Cerium(IV) oxide, nanopowder, <25 nm particle size (BET)
Sigma-Aldrich
Cerium(IV) oxide, powder, <5 μm, 99.9% trace metals basis