- Purification and characterization of catalytically active precursor of rat liver mitochondrial aldehyde dehydrogenase expressed in Escherichia coli.
Purification and characterization of catalytically active precursor of rat liver mitochondrial aldehyde dehydrogenase expressed in Escherichia coli.
The cDNA coding for the precursor (p-ALDH) or mature (m-ALDH) rat liver mitochondrial aldehyde dehydrogenase was cloned in an expression vector pT7-7 and expressed in Escherichia coli strain BL21 (DE3)/plysS. The p-ALDH expressed in E. coli was a soluble tetrameric protein. It exhibited virtually the same specific activity and KmS for substrates as m-ALDH. N-terminal sequencing of isolated p-ALDH provided the evidence that the catalytic activity was not derived from a partially processed mature-like enzyme. The assembly states of both p-ALDH and m-ALDH synthesized in a rabbit reticulocyte lysate were also determined. Both of them were monomers and could not bind to a 5'-AMP-Sepharose column, showing that the monomeric form of the enzyme is inactive. The stabilities in vivo and in vitro were compared between p-ALDH and m-ALDH expressed in E. coli. p-ALDH was less stable than was m-ALDH both in vivo and in vitro. Thus, although the conformations of p-ALDH and m-ALDH are similar, the presence of signal peptide is a destabilizing factor to the p-ALDH. p-ALDH expressed in E. coli could bind to and be translocated into rat liver mitochondria, however, with lower efficiency when compared to the import of p-ALDH synthesized in reticulocyte lysate.