Skip to Content
Merck
CN
  • The affinities of procolipase and colipase for interfaces are regulated by lipids.

The affinities of procolipase and colipase for interfaces are regulated by lipids.

Biophysical journal (1996-12-01)
G D Schmit, M M Momsen, W G Owen, S Naylor, A Tomlinson, G Wu, R E Stark, H L Brockman
ABSTRACT

It has been suggested that at physiological pH, the trypsin-catalyzed activation of the lipase cofactor, procolipase, to colipase has no consequence for intestinal lipolysis and serves primarily to release the N-terminal pentapeptide, enterostatin, a satiety factor (Larsson, A., and C. Erlanson-Albertsson 1991. The effect of pancreatic procolipase and colipase on pancreatic lipase activation. Biochim. Biophys. Acta 1083:283-288). This hypothesis was tested by measuring the adsorption of [14C]colipase to monolayers of 1-stearoyl-2-oleoyl-sn-3-glycerophosphocholine and 13, 16-cis, cis-docosadienoic acid in the presence and absence of procolipase. With saturating [14C]colipase in the subphase, the surface excess of [14C]colipase is 29% higher than that of procolipase, indicating that colipase packs more tightly in the interface. With [14C]colipase-procolipase mixtures, the proteins compete equally for occupancy of the argon-buffer interface. However, if a monolayer of either or both lipids is present, [14C]colipase dominates the adsorption process, even if bile salt is present in the subphase. If [14C]colipase and procolipase are premixed for > 12 h at pH approximately 8, this dominance is partial. If they are not premixed, procolipase is essentially excluded from the interface, even if procolipase is added before [14C]colipase. These results suggest that the tryptic cleavage of the N-terminal pentapeptide of procolipase may be of physiological consequence in the intestine.