Skip to Content
Merck
CN

Resolution doubling in 3D-STORM imaging through improved buffers.

PloS one (2013-07-23)
Nicolas Olivier, Debora Keller, Pierre Gönczy, Suliana Manley
ABSTRACT

Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3,4-Dihydroxybenzoic acid, ≥97.0% (T)
Sigma-Aldrich
Pyranose Oxidase from Coriolus sp., recombinant, expressed in E. coli, ≥2.7 units/mg solid
Sigma-Aldrich
Catalase from Aspergillus niger, ammonium sulfate suspension, ≥4,000 units/mg protein