Skip to Content
Merck
CN
  • Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus.

Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus.

The FEBS journal (2013-07-20)
Theresa Kouril, Dominik Esser, Julia Kort, Hans V Westerhoff, Bettina Siebers, Jacky L Snoep
ABSTRACT

Four enzymes of the gluconeogenic pathway in Sulfolobus solfataricus were purified and kinetically characterized. The enzymes were reconstituted in vitro to quantify the contribution of temperature instability of the pathway intermediates to carbon loss from the system. The reconstituted system, consisting of phosphoglycerate kinase, glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase and the fructose 1,6-bisphosphate aldolase/phosphatase, maintained a constant consumption rate of 3-phosphoglycerate and production of fructose 6-phosphate over a 1-h period. Cofactors ATP and NADPH were regenerated via pyruvate kinase and glucose dehydrogenase. A mathematical model was constructed on the basis of the kinetics of the purified enzymes and the measured half-life times of the pathway intermediates. The model quantitatively predicted the system fluxes and metabolite concentrations. Relative enzyme concentrations were chosen such that half the carbon in the system was lost due to degradation of the thermolabile intermediates dihydroxyacetone phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate, indicating that intermediate instability at high temperature can significantly affect pathway efficiency.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-Phosphoglyceric Phosphokinase from baker′s yeast (S. cerevisiae), ammonium sulfate suspension, ≥500 units/mg protein
Sigma-Aldrich
Aldolase from rabbit muscle, ammonium sulfate suspension, 10-20 units/mg protein
Sigma-Aldrich
Aldolase from rabbit muscle, lyophilized powder, ≥8.0 units/mg protein
Sigma-Aldrich
Triosephosphate Isomerase from baker′s yeast (S. cerevisiae), Type I, ammonium sulfate suspension, ~10,000 units/mg protein
Sigma-Aldrich
Triosephosphate Isomerase from rabbit muscle, Type III-S, ammonium sulfate suspension, ≥4,000 units/mg protein
Sigma-Aldrich
Triosephosphate Isomerase from rabbit muscle, Type X, lyophilized powder, ≥3,500 units/mg protein
Sigma-Aldrich
Dihydroxyacetone phosphate hemimagnesium salt hydrate, ≥95% (TLC)