Skip to Content
Merck
CN
  • Effect of cadmium pollution of atmospheric origin on field-grown maize in two consecutive years with diverse weather conditions.

Effect of cadmium pollution of atmospheric origin on field-grown maize in two consecutive years with diverse weather conditions.

Acta biologica Hungarica (2013-11-28)
Angéla Anda, Bernadett Illés, G Soós
ABSTRACT

The aim of the study was to analyse the effect of atmospheric cadmium (Cd) pollution of atmospheric origin in maize compared to a control without Cd pollution. The plant parameters investigated were the timing of phenological phases, leaf area index (LAI) and yield, while radiation and water regime parameters were represented by albedo (reflection grade) and evapotranspiration, respectively. In treatments with and without irrigation, Cd caused a significant reduction in LAI, accompanied by lower evapotranspiration. The mean annual albedo in the Cd-polluted treatment only rose to a moderate extent in 2011 (in 2010 there was hardly any change), but changes within the year were more pronounced in certain phases of development. Cd led to greater reflection of radiation by plants during the vegetative phase, so the radiation absorption of the canopy was reduced leading to a lower level of evapotranspiration. In the dry, hot year of 2011 maize plants in the non-irrigated treatments showed a substantial reduction in grain dry matter, but maize yield losses could be reduced by irrigation in areas exposed to Cd pollution.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cadmium, powder, −100 mesh, 99.5% trace metals basis
Sigma-Aldrich
Cadmium, shot, 3 mm, 99.999% trace metals basis
Sigma-Aldrich
Cadmium, granular, ≥99%, 5-20 mesh
Sigma-Aldrich
Cadmium, granular, 30-80 mesh, ≥99%