Skip to Content
Merck
CN
  • Chemical processing of materials on silicon: more functionality, smaller features, and larger wafers.

Chemical processing of materials on silicon: more functionality, smaller features, and larger wafers.

Annual review of chemical and biomolecular engineering (2012-06-14)
Nathan Marchack, Jane P Chang
ABSTRACT

The invention of the transistor followed by more than 60 years of aggressive device scaling and process integration has enabled the global information web and subsequently transformed how people communicate and interact. The principles and practices built upon chemical processing of materials on silicon have been widely adapted and applied to other equally important areas, such as microfluidic systems for chemical and biological analysis and microscale energy storage solutions. The challenge of continuing these technological advances hinges on further improving the performance of individual devices and their interconnectivity while making the manufacturing processes economical, which is dictated by the materials' innate functionality and how they are chemically processed. In this review, we highlight challenges in scaling up the silicon wafers and scaling down the individual devices as well as focus on needs and challenges in the synthesis and integration of multifunctional materials.

MATERIALS
Product Number
Brand
Product Description

Silicon, rod, 100mm, diameter 25mm, crystalline, 100%
Silicon, rod, 100mm, diameter 10.0mm, single crystal - random orientation, 100%
Silicon, disks, 15.9mm, thickness 0.38mm, single crystal, n-type, 100%
Silicon, disks, 15.9mm, thickness 0.38mm, single crystal, n-type, 100%
Silicon, rod, 100mm, diameter 12.7mm, single crystal - random orientation, 100%
Silicon, sheet, 40x40mm, thickness 3.0mm, single crystal, p-type, 100%
Silicon, rod, 100mm, diameter 2.0mm, crystalline, 100%
Silicon, sheet, 52x52mm, thickness 1.0mm, polycrystalline, 99.999%
Silicon, rod, 10mm, diameter 2.0mm, crystalline, 100%
Silicon, disks, 13mm, thickness 0.38mm, single crystal, 100%
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains phosphorus as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains phosphorus as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains phosphorus as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer, <111>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.3 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, nanopowder, <100 nm particle size (TEM), ≥98% trace metals basis
Silicon, rod, 50mm, diameter 5.0mm, crystalline, 100%
Silicon, sheet, 25x25mm, thickness 1.0mm, single crystal, -100, 100%
Silicon, rod, 50mm, diameter 5mm, single crystal, -100, 99.999%
Silicon, rod, 100mm, diameter 5.0mm, crystalline, 100%
Silicon, rod, 50mm, diameter 5mm, single crystal, -111, 99.999%
Silicon, rod, 50mm, diameter 2.0mm, crystalline, 100%
Silicon, sheet, 14x14mm, thickness 1.0mm, single crystal, -111, 100%
Silicon, rod, 25mm, diameter 2.0mm, crystalline, 100%