Merck
CN
  • Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer.

Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer.

International journal of nanomedicine (2013-07-28)
Kangan Li, Shihui Wen, Andrew C Larson, Mingwu Shen, Zhuoli Zhang, Qian Chen, Xiangyang Shi, Guixiang Zhang
ABSTRACT

Development of dual-mode or multi-mode imaging contrast agents is important for accurate and self-confirmatory diagnosis of cancer. We report a new multifunctional, dendrimer-based gold nanoparticle (AuNP) as a dual-modality contrast agent for magnetic resonance (MR)/computed tomography (CT) imaging of breast cancer cells in vitro and in vivo. In this study, amine-terminated generation 5 poly(amidoamine) dendrimers modified with gadolinium chelate (DOTA-NHS) and polyethylene glycol monomethyl ether were used as templates to synthesize AuNPs, followed by Gd(III) chelation and acetylation of the remaining dendrimer terminal amine groups; multifunctional dendrimer-entrapped AuNPs (Gd-Au DENPs) were formed. The formed Gd-Au DENPs were used for both in vitro and in vivo MR/CT imaging of human MCF-7 cancer cells. Both MR and CT images demonstrate that MCF-7 cells and the xenograft tumor model can be effectively imaged. The Gd-Au DENPs uptake, mainly in the cell cytoplasm, was confirmed by transmission electron microscopy. The cell cytotoxicity assay, cell morphology observation, and flow cytometry show that the developed Gd-Au DENPs have good biocompatibility in the given concentration range. Our results clearly suggest that the synthetic Gd-Au DENPs are amenable for dual-modality MR/CT imaging of breast cancer cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(ethylene glycol) methyl ether, average Mn 5,000