Skip to Content
Merck
CN
  • Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles.

Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles.

Environmental pollution (Barking, Essex : 1987) (2014-08-05)
Xilong Wang, Enxing Ma, Xiaofang Shen, Xiaoying Guo, Meng Zhang, Haiyun Zhang, Ye Liu, Fei Cai, Shu Tao, Baoshan Xing
ABSTRACT

Dissolved organic matter (DOM) may alter the sorption of hydrophobic organic contaminants (HOC) to metal oxide nanoparticles (NPs), but the role of DOM and NP types is poorly understood. Here, phenanthrene sorption was quantified on four types of nano-TiO2 (three rutile, one anatase), and a bulk, raw TiO2 powder. Prior to the sorption experiments, these nanoparticles were coated using four different organic materials: Lignin (LIG), tannic acid (TAN), Congo red (CON), and capsorubin (CAP). Lignin, tannic acid, congo red and capsorubin coating substantially enhanced phenanthrene sorption to various TiO2 particles. After coating with a specific DOM, Kd values by the DOM-coated TiO2 particles on percent organic carbon content and surface area (SA) basis (Koc/SA) generally followed the order: TiO2 NPs with hydrophobic surfaces > bulk TiO2 particles > other TiO2 NPs. Different Koc/SA values of various DOM-TiO2 complexes resulted from distinct conformation of the coated DOM and aggregation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Titanium, tube, 500mm, outside diameter 6.35mm, inside diameter 4.57mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, wire reel, 1m, diameter 0.25mm, as drawn, 99.6+%
Titanium, wire reel, 100m, diameter 1.0mm, annealed, 99.6+%
Titanium, wire reel, 10m, diameter 1.5mm, as drawn, 99.6+%
Titanium, tube, 500mm, outside diameter 6.35mm, inside diameter 5.53mm, wall thickness 0.41mm, annealed, 99.6+%
Titanium, wire reel, 0.5m, diameter 1.0mm, as drawn, 99.6+%
Titanium, rod, 100mm, diameter 16mm, as drawn, 99.99+%
Titanium, rod, 100mm, diameter 2mm, as drawn, 99.99+%
Titanium, rod, 100mm, diameter 6mm, annealed, 99.6+%
Titanium, microfoil, disks, 10mm, thinness 1.0μm, specific density 429μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, microfoil, disks, 25mm, thinness 0.25μm, specific density 112.6μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 100mm, diameter 2mm, annealed, 99.6+%
Titanium, microfoil, disks, 25mm, thinness 0.5μm, specific density 225.4μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, tube, 100mm, outside diameter 25.4mm, inside diameter 23.62mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 0.51mm, inside diameter 0.35mm, wall thickness 0.08mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 3.0mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 12.7mm, inside diameter 10.9mm, wall thickness 0.9mm, annealed, 99.6+%
Titanium, rod, 10mm, diameter 50mm, 99.99+%
Titanium, rod, 1000mm, diameter 3.0mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 4mm, annealed, 99.6+%
Titanium, rod, 1000mm, diameter 1.5mm, annealed, 99.6+%
Titanium, rod, 25mm, diameter 16mm, as drawn, 99.99+%
Titanium, tube, 200mm, outside diameter 10.3mm, inside diameter 8.7mm, wall thickness 0.8mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 1.05mm, inside diameter 0.75mm, wall thickness 0.15mm, annealed, 99.6+%
Titanium, tube, 200mm, outside diameter 6.35mm, inside diameter 5.53mm, wall thickness 0.41mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 6.1mm, inside diameter 5.1mm, wall thickness 0.5mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 25.4mm, inside diameter 23.62mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, rod, 500mm, diameter 5mm, annealed, 99.6+%