Skip to Content
Merck
CN
  • Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model.

Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model.

Experimental cell research (2014-07-13)
Fei Xiao, Zanjing Zhai, Chuan Jiang, Xuqiang Liu, Haowei Li, Xinhua Qu, Zhengxiao Ouyang, Qiming Fan, Tingting Tang, An Qin, Dongyun Gu
ABSTRACT

Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn-Asp-Lys-Tyr-Glu-Pro-Phe, ≥97% (HPLC)
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, 36.5-38% in H2O
Titanium, wire reel, 5m, diameter 0.20mm, annealed, 99.6+%
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Titanium, rod, 500mm, diameter 1.5mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 25.4mm, inside diameter 23.62mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, rod, 500mm, diameter 5mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 5mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 3.0mm, annealed, 99.6+%
Titanium, rod, 490mm, diameter 2mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 1.6mm, inside diameter 1.2mm, wall thickness 0.2mm, hard, 99.6+%
Titanium, microfoil, disks, 25mm, thinness 0.25μm, specific density 112.6μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 100mm, diameter 5mm, annealed, 99.6+%
Titanium, mesh, 100x100mm, nominal aperture 0.19mm, wire diameter 0.23mm, 60x60 wires/inch, open area 20%, twill weave
Titanium, rod, 500mm, diameter 6mm, annealed, 99.6+%
Titanium, tube, 200mm, outside diameter 25.4mm, inside diameter 23.62mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 2mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 2.03mm, inside diameter 1.55mm, wall thickness 0.24mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 10.3mm, inside diameter 8.7mm, wall thickness 0.8mm, annealed, 99.6+%
Titanium, microfoil, disks, 25mm, thinness 0.5μm, specific density 225.4μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, tube, 100mm, outside diameter 6.35mm, inside diameter 5.53mm, wall thickness 0.41mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 4.25mm, inside diameter 3.75mm, wall thickness 0.25mm, annealed, 99.6+%