Skip to Content
Merck
CN
  • In vitro and in vivo toxicological studies of V nerve agents: molecular and stereoselective aspects.

In vitro and in vivo toxicological studies of V nerve agents: molecular and stereoselective aspects.

Toxicology letters (2014-12-03)
Georg Reiter, Susanne Müller, Ira Hill, Kendal Weatherby, Horst Thiermann, Franz Worek, John Mikler
ABSTRACT

In vitro inhibition data of cholinesterases (ChEs) and reactivation with HI 6 are presented for separated VX and VR enantiomers with high purity (enantiomer excess >99.999%). Inhibition rate constants for (-)-VR were fourfold higher than for (-)-VX. Marked higher stereoselectivity of ChEs inhibition was observed for VR compared with VX enantiomers. Low/no reactivation was determined for respective (+)-enantiomers. Results were related to orientation of (-)- and (+)-enantiomers in ChEs active sites. In vivo in swine, absorption rate constants were practically identical for VX and VR enantiomers after percutaneous application of 3xLD₅₀ underlining relevance of amine group and postulated equilibria shifts between charged, uncharged, open and cyclic form (skin depot). In vivo toxicokinetics of VX and VR enantiomers differed markedly after 4h. Elimination of VX was much slower compared with VR. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition in vivo differed for VX and VR. In vivo spontaneous reactivation was not observed for VX-inhibited AChE while VR-inhibited AChE was much faster spontaneously reactivated than expected and AChE inhibition by VR was slower than expected. Progredient BChE inhibition was detected after VX application while VR inhibited BChE weakly. Possible explanation may be impact of the agents on hemodynamics and different metabolisms. Thus, due to increase of the V agents' blood concentration after atropine administration (depot release) the present standard therapy should be thoroughly reconsidered.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
5,5′-Dithiobis(2-nitrobenzoic acid), ReagentPlus®, 99%
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, Molecular Biology, 10 M in H2O
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Sodium hydroxide, BioUltra, suitable for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
5,5′-Dithiobis(2-nitrobenzoic acid), ≥98%, BioReagent, suitable for determination of sulfhydryl groups
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ammonia-14N, 99.99 atom % 14N
Sigma-Aldrich
Methanol, purification grade, 99.8%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
5,5′-Dithiobis(2-nitrobenzoic acid), Vetec, reagent grade, 98%
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)