Merck
CN
  • Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production.

Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production.

Applied microbiology and biotechnology (2015-02-27)
Congqiang Zhang, Ruiyang Zou, Xixian Chen, Gregory Stephanopoulos, Heng-Phon Too
ABSTRACT

Artemisinin is a potent antimalarial drug; however, it suffers from unstable and insufficient supply from plant source. Here, we established a novel multivariate-modular approach based on experimental design for systematic pathway optimization that succeeded in improving the production of amorphadiene (AD), the precursor of artemisinin, in Escherichia coli. It was initially found that the AD production was limited by the imbalance of glyceraldehyde 3-phosphate (GAP) and pyruvate (PYR), the two precursors of the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway. Furthermore, it was identified that GAP and PYR could be balanced by replacing the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) with the ATP-dependent galactose permease and glucose kinase system (GGS) and this resulted in fivefold increase in AD titer (11 to 60 mg/L). Subsequently, the experimental design-aided systematic pathway optimization (EDASPO) method was applied to systematically optimize the transcriptional expressions of eight critical genes in the glucose uptake and the DXP and AD synthesis pathways. These genes were classified into four modules and simultaneously controlled by T7 promoter or its variants. A regression model was generated using the four-module experimental data and predicted the optimal expression ratios among these modules, resulting in another threefold increase in AD titer (60 to 201 mg/L). This EDASPO method may be useful for the optimization of other pathways and products beyond the scope of this study.

MATERIALS
Product Number
Brand
Product Description

Supelco
Density Standard 749 kg/m3, H&D Fitzgerald Ltd. Quality
Supelco
(−)-trans-Caryophyllene, analytical standard
Sigma-Aldrich
(−)-trans-Caryophyllene, ≥98.0% (sum of enantiomers, GC)
Supelco
Dodecane, analytical standard
Supelco
Ethyl acetate, analytical standard
Sigma-Aldrich
Dodecane, anhydrous, ≥99%
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG
Sigma-Aldrich
β-Caryophyllene, ≥80%, FCC, FG
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Sigma-Aldrich
Dodecane, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl acetate, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99.5% (GC)
Sigma-Aldrich
Ethyl acetate, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Ethyl acetate, biotech. grade, ≥99.8%
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Ethyl acetate, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Supelco
Ethyl Acetate, Pharmaceutical Secondary Standard; Certified Reference Material