Skip to Content
Merck
CN
  • Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars.

Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars.

Biotechnology and bioengineering (2014-02-14)
Rajeev Kumar, Charles E Wyman
ABSTRACT

Cellulase enzymes contribute a major fraction of the total cost for biological conversion of lignocellulosic biomass to fuels and chemicals. Although a several fold reduction in cellulase production costs and enhancement of cellulase activity and stability have been reported in recent years, sugar yields are still lower at low enzyme doses than desired commercially. We recently reported that hemicellulose xylan and its oligomers strongly inhibit cellulase and that supplementation of cellulase with xylanase and β-xylosidase would significantly reduce such inhibition. In this study, mannan polysaccharides and their enzymatically prepared hydrolyzates were discovered to be strongly inhibitory to fungal cellulase in cellulose conversion (>50% drop in % relative conversion), even at a small concentration of 0.1 g/L, and inhibition was much greater than experienced by other known inhibitors such as cellobiose, xylooligomers, and furfural. Furthermore, cellulase inhibition dramatically increased with heteromannan loading and mannan substitution with galactose side units. In general, enzymatically prepared hydrolyzates were less inhibitory than their respective mannan polysaccharides except highly substituted ones. Supplementation of cellulase with commercial accessory enzymes such as xylanase, pectinase, and β-glucosidase was effective in greatly relieving inhibition but only for less substituted heteromannans. However, cellulase supplementation with purified heteromannan specific enzymes relieved inhibition by these more substituted heteromannans as well, suggesting that commercial preparations need to have higher amounts of such activities to realize high sugar yields at the low enzyme protein loadings needed for low cost fuels production.

MATERIALS
Product Number
Brand
Product Description

Galactose, European Pharmacopoeia (EP) Reference Standard
Millipore
D-(+)-Galactose, suitable for microbiology, ≥99.0%
Sigma-Aldrich
D-(+)-Galactose, meets analytical specification of Ph. Eur., BP
Sigma-Aldrich
D-(+)-Galactose, ≥98% (HPLC)
Sigma-Aldrich
D-(+)-Galactose, ≥99% (HPLC)
Sigma-Aldrich
D-(+)-Galactose, BioXtra, ≥99% (HPLC)
Sigma-Aldrich
D-(+)-Galactose, ≥99% (HPLC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sulfuric acid, 99.999%
USP
Galactose, United States Pharmacopeia (USP) Reference Standard
Supelco
Galactose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sulfuric acid, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
D-(+)-Galactose, Vetec, reagent grade, ≥98%
Sigma-Aldrich
Sulfuric acid, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Sulfuric acid, puriss. p.a., for determination of Hg, ACS reagent, reag. ISO, reag. Ph. Eur., 95.0-97.0%
Supelco
Sulfuric acid concentrate, 0.1 M H2SO4 in water (0.2N), eluent concentrate for IC