Skip to Content
Merck
CN
  • Hypoxia-elicited catecholamine release is controlled by L-type as well as N/PQ types of calcium channels in rat embryo chromaffin cells.

Hypoxia-elicited catecholamine release is controlled by L-type as well as N/PQ types of calcium channels in rat embryo chromaffin cells.

American journal of physiology. Cell physiology (2014-07-06)
José-Carlos Fernández-Morales, Juan-Fernando Padín, Juan-Alberto Arranz-Tagarro, Stefan Vestring, Antonio G García, Antonio Miguel G de Diego
ABSTRACT

At early life, the adrenal chromaffin cells respond with a catecholamine surge under hypoxic conditions. This response depends on Ca(2+) entry through voltage-activated calcium channels (VACCs). We have investigated here three unresolved questions that concern this response in rat embryo chromaffin cells (ECCs): 1) the relative contribution of L (α1D, Cav1.3), N (α1B, Cav2.2), and PQ (α1A, Cav2.1) to the whole cell Ca(2+) current (ICa); 2) the relative contribution of L and N/PQ channels to the cytosolic Ca(2+) elevations triggered by hypoxia (Δ[Ca(2+)]c); and 3) the role of L and non-L high-VACCs in the regulation of the catecholamine surge occurring during prolonged (1 min) hypoxia exposure of ECCs. Nimodipine halved peak ICa and blocked 60% the total Ca(2+) entry during a 50-ms depolarizing pulse to 0 mV (QCa). Combined ω-agatoxin IVA plus ω-conotoxin GVIA (Aga/GVIA) blocked 30% of both ICa peak and QCa. This relative proportion of L- and non-L VACCs was corroborated by Western blot that indicated 55, 23, and 25% relative expression of L, N, and PQ VACCs. Exposure of ECCs to hypoxia elicited a mild but sustained Δ[Ca(2+)]c; the area of Δ[Ca(2+)]c was blocked 50% by nifedipine and 10% by Aga/GVIA. Exposure of ECCs to 1-min hypoxia elicited an initial transient burst of amperometric secretory spikes followed by scattered spikes along the time of cell exposure to hypoxia. This bulk response was blocked 85% by nimodipine and 35% by Aga/GVIA. Histograms on secretory spike frequency vs. time indicated a faster initial inactivation when Ca(2+) entry took place through N/PQ channels; more sustained secretion but at a lower rate was associated to Ca(2+) entry through L channels. The results suggest that the HIS response may initially be controlled by L and P/Q channels, but later on, N/PQ channels inactivate and the delayed HIS response is maintained at lower rate by slow-inactivating L channels.

MATERIALS
Product Number
Brand
Product Description

USP
Nifedipine, United States Pharmacopeia (USP) Reference Standard
Nifedipine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Nifedipine, ≥98% (HPLC), powder
Supelco
Nifedipine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Nimodipine
Nimodipine, European Pharmacopoeia (EP) Reference Standard
Supelco
Nimodipine, Pharmaceutical Secondary Standard; Certified Reference Material