Merck
CN
  • Using near infrared transmittance to generate sorted fractions of Fusarium-infected wheat and the impact on broiler performance.

Using near infrared transmittance to generate sorted fractions of Fusarium-infected wheat and the impact on broiler performance.

Poultry science (2015-05-28)
Michael E Kautzman, Mark L Wickstrom, Natacha S Hogan, Tom A Scott
ABSTRACT

The objective of this study was to investigate the effects of naturally contaminated Fusarium wheat containing deoxynivalenol (DON) on growth and performance of broiler chickens from 0 to 35 d. The BoMill TriQ individual kernel sorting technology uses near infrared transmittance (NIT) spectra to separate Fusarium-damaged kernels (FDK) from healthy kernels based on individual kernel CP. Three Fusarium-contaminated wheat sources were individually sorted into 3 test fractions: outlier (10% of the source), high mycotoxin (20% of the source), and low mycotoxin (70% of the source). These fractions were reconstituted into 4 ratios-M0, M20, M40, and M60-relating to the proportion of the high mycotoxin fraction in the reconstituted diets. These 12 reconstituted wheat sources with varying levels of DON were incorporated at ∼70% (starter) or ∼75% (grower/finisher) into diets. The fractions of wheat used had FDK ranging from 0.1 to 25.8% and DON from 0.0 to 14.3 ppm. A total of 480 newly hatched Ross 308 male broilers were randomly divided into 96 cages. Each test diet was assigned to 8 replicates with 5 birds per replicate cage. At 21 d, 180 birds were transferred to 36 cages, allowing 3 replicates of 5 birds per diet until 35 d. A factorial arrangement analysis compared the 3 wheat sources and 4 ratios produced from each sorted wheat. Growth and performance were evaluated as BW (g), feed intake (FI; g/bird/day), feed conversion ratio (FCR; g:g), AME (kcal ME/kg diet), nitrogen retention (NR; %), and mortality (%) for 0 to 21 d and 21 to 35 d. Results indicate no significant difference in BW, FI, and FCR (P > 0.05). Significant differences were seen in AME and NR (P < 0.01). This study demonstrates the potential of this novel sorting technology to produce naturally contaminated diets with a large range of mycotoxin concentrations from a single wheat source to enable future investigations of mycotoxin exposure in any species.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Aflatoxin B1 from Aspergillus flavus, from Aspergillus flavus
Sigma-Aldrich
Deoxynivalenol