Skip to Content
Merck
CN
  • Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction.

Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction.

The Science of the total environment (2015-09-12)
C Mystrioti, T D Xanthopoulou, P Tsakiridis, N Papassiopi, A Xenidis
ABSTRACT

The effectiveness of five plant extracts and juices, i.e. extracts of Camellia sinensis (green tea, GT), Syzygium aromaticum (clove, CL), Mentha spicata (spearmint, SM), Punica granatum juice (pomegranate, PG) and Red Wine (RW), for the production of nanoiron suspensions and their application for Cr(VI) reduction was investigated. Polyphenols contained in extracts act as reducing agents for iron ions in aqueous solutions, forming thus iron nanoparticles, and stabilize the nanoparticles produced from further oxidation and agglomeration. The maximum amount of polyphenols extracted per g of herbs was obtained at herb mass to water volume ratio varying from 10 to 20g/L. Suspensions of nanoparticles with sizes below 60nm were produced by mixing iron chloride solution with the plant extracts and juices investigated. The maximum concentration of nanoiron in suspensions was estimated to 22mM, obtained using RW and PG at a mixing ratio of iron solution to extract equal to 2. Lower concentrations, up to 18mM, were achieved using GT and CL extracts. Therefore, PG juice and RW were considered as more effective for nanoiron production, and, together with GT extracts, they were selected for the production of nanoiron suspensions, which have been proven effective for Cr(VI) reduction, reaching removal capacity as high as 500mg Cr(VI) per g of iron in nanoparticles.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium carbonate, BioUltra, anhydrous, ≥99.5% (calc. on dry substance, T)
Sigma-Aldrich
1,10-Phenanthroline, ≥99%
Sigma-Aldrich
Phthalic acid, puriss. p.a., ≥99.5% (T)
Sigma-Aldrich
1,5-Diphenylcarbazide, ACS reagent
Sigma-Aldrich
Phthalic acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium carbonate, BioXtra, ≥99.0%
Sigma-Aldrich
1,5-Diphenylcarbazide, reagent grade
Sigma-Aldrich
Phthalic acid, reagent grade, 98%
Sigma-Aldrich
Sodium carbonate, anhydrous, powder, 99.999% trace metals basis
Sigma-Aldrich
Sodium carbonate, Vetec, reagent grade, ≥99.5%
Sigma-Aldrich
Sodium carbonate, puriss., meets analytical specification of Ph. Eur., BP, NF, FCC, E500, anhydrous, 99.5-100.5% (calc. to the dried substance)
Sigma-Aldrich
Sodium carbonate, anhydrous, powder or granules, free-flowing, Redi-Dri, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium carbonate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium carbonate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Sodium carbonate, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Iron(III) chloride hexahydrate, puriss. p.a., reag. Ph. Eur., ≥99%
Sigma-Aldrich
Sodium carbonate, ACS reagent, anhydrous, ≥99.5%, powder or granules
Sigma-Aldrich
Sodium carbonate, ACS reagent (primary standard), anhydrous, 99.95-100.05% dry basis
Sigma-Aldrich
Sodium carbonate, anhydrous, free-flowing, Redi-Dri, ACS reagent (primary standard), 99.95-100.05% dry basis
Sigma-Aldrich
Sodium carbonate, powder, ≥99.5%, ACS reagent
Sigma-Aldrich
Iron(III) chloride hexahydrate, ACS reagent, 97%
Sigma-Aldrich
Iron(III) chloride hexahydrate, puriss. p.a., ACS reagent, crystallized, 98.0-102% (RT)
Sigma-Aldrich
Iron(III) chloride hexahydrate, reagent grade, ≥98%, chunks
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Sigma-Aldrich
Potassium dichromate, 99.98% trace metals basis
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Phenol, ≥99%
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)