Skip to Content
Merck
CN

Switched photocurrent direction in Au/TiO2 bilayer thin films.

Scientific reports (2015-06-02)
Hongjun Chen, Gang Liu, Lianzhou Wang
ABSTRACT

Switched photocurrent direction in photoelectrodes is a very interesting phenomenon and has demonstrated their potentials in important applications including photodiodes, phototransistors, light-driven sensors and biosensors. However, the design and mechanism understanding of such photoelectrodes remain challenging to date. Here we report a new phenomenon of sequence-driven the photocurrent direction on a simple bilayer structure of 5 nm thick Au and 10 nm TiO2 under visible-light irradiation. It is found that when Au layer are deposited as the outer layer on TiO2 coated fluorine doped tin oxide (FTO) substrate (designated as FTO/TiO2/Au), anodic photocurrent is obtained due to the band bending formed at the electrode-electrolyte interface. Interestingly, simply swapping the deposition sequence of Au and TiO2 leads to cathodic photocurrent on FTO/Au/TiO2 electrode. Characterization and calculations on the photoelectrode reveals that the photogenerated electrons can be easily trapped in the energy well formed between the band bending and the Schottky contact, which allows electronic tunnelling through the 1.6 nm thick space charge layer, resulting in a unique anodic to cathodic photocurrent conversion. The understanding of this new phenomenon can be important for designing new generation optoelectronic converting devices in a low-cost and facile manner.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydroxide, BioUltra, suitable for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O