Skip to Content
Merck
CN
  • Injectable radiopaque and bioactive polycaprolactone-ceramic composites for orthopedic augmentation.

Injectable radiopaque and bioactive polycaprolactone-ceramic composites for orthopedic augmentation.

Journal of biomedical materials research. Part B, Applied biomaterials (2014-12-03)
Young Jung No, Seyed-Iman Roohani-Esfahani, Zufu Lu, Thomas Schaer, Hala Zreiqat
ABSTRACT

The aim of this study was to develop and characterize an injectable bone void filler by incorporating baghdadite (Ca3 ZrSi2 O9 ) particles (average size of 1.7 µm) into polycaprolactone (PCL). A series of PCL composites containing different volume percentages of baghdadite [1 (PCL-1%Bag), 5 (PCL-5%Bag), 10 (PCL-10%Bag), 20 (PCL-20%Bag), and 30 (PCL-30%Bag)] were prepared, and their injectability, setting time, mechanical properties, radiopacity, degradation, and cytocompatibility were investigated. PCL, PCL-1%Bag, PCL-5%Bag, and PCL-10%Bag were able to be injected through a stainless steel syringe (Length: 9.0 mm, nozzle diameter: 2.2 mm) at 75°C at injection forces of below 1.5 kN. The core temperature of the injected material at the nozzle exit ranged between 55 and 60°C and was shown to set after 2.5-3.5 min postinjection in a 37°C environment. Injection force, melt viscosity, and radiopacity of the composites increased with increasing baghdadite content. Incorporation of 10-30 vol % baghdadite into PCL increased the compressive strength of the composites from 36 to 47.1 MPa, compared with that for pure PCL (31.4 MPa). Similar trend was found for the compressive modulus of the composites, which increased from 203.8 to 741 MPa, compared with that for pure PCL (205 MPa). Flexural strain of PCL, PCL-5%Bag, and PCL-10%Bag exceeded 30%, and PCL-10%Bag showed the highest flexural strength (29.8 MPa). Primary human osteoblasts cultured on PCL-10%Bag showed a significant upregulation of osteogenic genes compared with pure PCL. In summary, our results demonstrated that PCL-10%Bag could be a promising injectable material for orthopedic and trauma application.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
L-Ascorbic acid, Vetec, reagent grade, 99%
Sigma-Aldrich
Sodium pyruvate, Vetec, reagent grade, 98%
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, Vetec, reagent grade, ≥99%