Skip to Content
Merck
CN
  • Protection of adult mouse progenitor cells and human glioma cells by de novo decorin expression in an oxygen- and glucose-deprived cell culture model system.

Protection of adult mouse progenitor cells and human glioma cells by de novo decorin expression in an oxygen- and glucose-deprived cell culture model system.

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism (2006-02-10)
Manoranjan Santra, Mark Katakowski, Rui Lan Zhang, Zheng Gang Zhang, He Meng, Feng Jiang, Michael Chopp
ABSTRACT

We employed an in vitro hypoxia cell culture model system and gene transfer technology to examine the effect of the decorin gene on cell survival against oxygen and glucose deprivation (OGD). Ectopic expression of decorin in subventricular zone (SVZ) cells from adult male mouse brain and human glioblastoma U-87 cells kept the cells viable against 24 h of OGD. Fewer than 1% of decorin-synthesizing cells were apoptotic after 12 h of OGD. In contrast, 100% of the control cells were apoptotic even after 4 h of OGD. De novo decorin synthesis in SVZ and U-87 cells induced expression of p21, p27 and Ras, AKT (acutely transforming retrovirus AKT8 in rodent T-cell lymphoma), and phosphorylated AKT. Blocking of phosphoinositide 3-kinase (PI-3K), Ras, and the epidermal growth factor receptor with specific inhibitors had no effect on induction of Ras, p21, and p27 at the messenger RNA level in decorin-synthesizing SVZ and U-87 cells. PI-3K inhibitors significantly increased apoptosis in decorin-expressing cells. Our data indicate that induction of p21, p27, Ras, AKT, and phosphorylated AKT by decorin inhibits apoptosis and protects U-87 and SVZ cells against OGD. Therefore, our data suggest that decorin is a potent trophic factor that protects neuronal progenitor cells and glioma cells from OGD.