Skip to Content
Merck
CN
  • ORM-3819 promotes cardiac contractility through Ca(2+) sensitization in combination with selective PDE III inhibition, a novel approach to inotropy.

ORM-3819 promotes cardiac contractility through Ca(2+) sensitization in combination with selective PDE III inhibition, a novel approach to inotropy.

European journal of pharmacology (2016-02-14)
László Nagy, Piero Pollesello, Heimo Haikala, Ágnes Végh, Tia Sorsa, Jouko Levijoki, Szabolcs Szilágyi, István Édes, Attila Tóth, Zoltán Papp, Julius Gy Papp
ABSTRACT

This study is the first pharmacological characterization of the novel chemical entity, ORM-3819 (L-6-{4-[N'-(4-Hydroxi-3-methoxy-2-nitro-benzylidene)-hydrazino]-phenyl}-5-methyl-4,5-dihydro-2H-pyridazin-3-one), focusing primarily on its cardiotonic effects. ORM-3819 binding to cardiac troponin C (cTnC) was confirmed by nuclear magnetic resonance spectroscopy, and a selective inhibition of the phosphodiesterase III (PDE III) isozyme (IC50=3.88±0.3 nM) was revealed during in vitro enzyme assays. The Ca(2+)-sensitizing effect of ORM-3819 was demonstrated in vitro in permeabilized myocyte-sized preparations from left ventricles (LV) of guinea pig hearts (ΔpCa50=0.12±0.01; EC50=2.88±0.14 µM). ORM-3819 increased the maximal rate of LV pressure development (+dP/dtmax) (EC50=8.9±1.7 nM) and LV systolic pressure (EC50=7.63±1.74 nM) in Langendorff-perfused guinea pig hearts. Intravenous administration of ORM-3819 increased LV+dP/dtmax (EC50=0.13±0.05 µM/kg) and improved the rate of LV pressure decrease (-dP/dtmax); (EC50=0.03±0.02 µM/kg) in healthy guinea pigs. In an in vivo dog model of myocardial stunning, ORM-3819 restored the depressed LV+dP/dtmax and improved % segmental shortening (%SS) in the ischemic area (to 18.8±3), which was reduced after the ischaemia-reperfusion insult (from 24.1±2.1 to 11.0±2.4). Our data demonstrate ORM-3819 as a potent positive inotropic agent exerting its cardiotonic effect by a cTnC-dependent Ca(2+)-sensitizing mechanism in combination with the selective inhibition of the PDE III isozyme. This dual mechanism of action results in the concentration-dependent augmentation of the contractile performance under control conditions and in the postischemic failing myocardium.