Skip to Content
Merck
CN
  • Parylene C topographic micropattern as a template for patterning PDMS and Polyacrylamide hydrogel.

Parylene C topographic micropattern as a template for patterning PDMS and Polyacrylamide hydrogel.

Scientific reports (2017-07-20)
Ilaria Sanzari, Mauro Callisti, Antonio De Grazia, Daniel J Evans, Tomas Polcar, Themistoklis Prodromakis
ABSTRACT

Parylene C is a well-known polymer and it has been mainly employed as a protective layer for implantable electronics. In this paper, we propose a new approach to use Parylene C as a versatile template for patterning soft materials potentially applicable as scaffolds in cardiac tissue engineering (TE). Parylene C substrates were anisotropically patterned through standard lithographic process with hydrophilic channels separating raised hydrophobic strips. Ridges and grooves of the template are 10 µm width and depth ranging from 1 to 17 µm. Polydimethylsiloxane (PDMS) and Polyacrylamide (PAm) hydrogel have been chosen as soft polymers to be moulded. Thanks to their chemical and physical properties PDMS and PAm hydrogel mimic the extracellular matrix (ECM). PDMS was spin coated on micropatterned Parylene C obtaining composite substrates with 460 nm and 1.15 µm high grooves. The Young's modulus of the composite Parylene C/PDMS was evaluated and it was found to be almost half when compared to PDMS. PAm hydrogel was also printed using collagen coated micro-grooved Parylene C. Optical micrographs and fluorescence analysis show the successful topographic and protein pattern transfer on the hydrogel.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
N,N′-Methylenebis(acrylamide), 99%
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Acrylamide solution, 40%, suitable for electrophoresis, sterile-filtered
Sigma-Aldrich
N,N,N′,N′-Tetramethylethylenediamine, BioReagent, suitable for electrophoresis, ≥99.0%