Skip to Content
Merck
CN
  • Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair.

Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair.

Nucleic acids research (2017-10-05)
Varun Kumar, Thomas Fleming, Stefan Terjung, Christian Gorzelanny, Christoffer Gebhardt, Raman Agrawal, Marcus A Mall, Julia Ranzinger, Martin Zeier, Thati Madhusudhan, Satish Ranjan, Berend Isermann, Arthur Liesz, Divija Deshpande, Hans-Ulrich Häring, Subrata K Biswas, Paul R Reynolds, Hans-Peter Hammes, Rainer Peperkok, Peter Angel, Stephan Herzig, Peter P Nawroth
ABSTRACT

The integrity of genome is a prerequisite for healthy life. Indeed, defects in DNA repair have been associated with several human diseases, including tissue-fibrosis, neurodegeneration and cancer. Despite decades of extensive research, the spatio-mechanical processes of double-strand break (DSB)-repair, especially the auxiliary factor(s) that can stimulate accurate and timely repair, have remained elusive. Here, we report an ATM-kinase dependent, unforeseen function of the nuclear isoform of the Receptor for Advanced Glycation End-products (nRAGE) in DSB-repair. RAGE is phosphorylated at Serine376 and Serine389 by the ATM kinase and is recruited to the site of DNA-DSBs via an early DNA damage response. nRAGE preferentially co-localized with the MRE11 nuclease subunit of the MRN complex and orchestrates its nucleolytic activity to the ATR kinase signaling. This promotes efficient RPA2S4-S8 and CHK1S345 phosphorylation and thereby prevents cellular senescence, IPF and carcinoma formation. Accordingly, loss of RAGE causatively linked to perpetual DSBs signaling, cellular senescence and fibrosis. Importantly, in a mouse model of idiopathic pulmonary fibrosis (RAGE-/-), reconstitution of RAGE efficiently restored DSB-repair and reversed pathological anomalies. Collectively, this study identifies nRAGE as a master regulator of DSB-repair, the absence of which orchestrates persistent DSB signaling to senescence, tissue-fibrosis and oncogenesis.