- Analysis of the SDHD gene, the susceptibility gene for familial paraganglioma syndrome (PGL1), in pheochromocytomas.
Analysis of the SDHD gene, the susceptibility gene for familial paraganglioma syndrome (PGL1), in pheochromocytomas.
Pheochromocytomas are neural crest-derived tumors that occur mostly sporadically, but may also be part of inherited syndromes. The molecular pathogenesis of sporadic pheochromocytomas remains unknown. Recently, the susceptibility gene for familial paraganglioma syndrome, a disorder embryologically related to pheochromocytomas, was characterized and shown to encode the small subunit of succinate dehydrogenase (SDHD), which is part of the mitochondrial complex II. This complex regulates oxygen-sensing signals. Importantly, hypoxic signals also appear to be related to the pathogenesis of pheochromocytomas associated with von Hippel-Lindau syndrome. We sequenced the entire coding region of the SDHD gene in a series of pheochromocytomas. Although we did not find mutations in the gene, we identified a new intronic single nucleotide polymorphism in 15% of the samples (g.97739A-->G). We also confirmed the existence of a sequence highly homologous to the SDHD complementary DNA in chromosome 1p34--36, a region commonly deleted in pheochromocytomas. Full analysis of this sequence revealed a heterozygous single base substitution in 70% of our samples that was also present in the germline. This sequence does not appear to be transcribed and is probably a processed pseudogene. Therefore, despite its chromosomal location, it is unlikely that this sequence is a target of loss of heterozygosity in pheochromocytomas. In conclusion, mutations of the SDHD gene are not a common event in this series of sporadic pheochromocytomas. The existence of SDHD pseudogenes should be considered when analyzing complementary DNA-based samples.