Skip to Content
Merck
CN

113190

1-Phenyloctane

98%

Synonym(s):

Octylbenzene

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
C6H5(CH2)7CH3
CAS Number:
Molecular Weight:
190.32
UNSPSC Code:
12352100
NACRES:
NA.22
PubChem Substance ID:
EC Number:
218-582-1
Beilstein/REAXYS Number:
1906253
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

1-Phenyloctane, 98%

InChI key

CDKDZKXSXLNROY-UHFFFAOYSA-N

InChI

1S/C14H22/c1-2-3-4-5-6-8-11-14-12-9-7-10-13-14/h7,9-10,12-13H,2-6,8,11H2,1H3

SMILES string

CCCCCCCCc1ccccc1

assay

98%

refractive index

n20/D 1.484 (lit.)

bp

261-263 °C (lit.)

mp

−36 °C (lit.)

density

0.858 g/mL at 25 °C (lit.)

functional group

phenyl

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

1-Phenyloctane is used as a solvent to study the self-assembly of derivatives of tetrathiafulvalene (TTF) on graphite and their visualization by scanning tunnelling microscopy (STM). It is also used to study the effects of the substitution of these compounds on the interactions between them.

General description

Octylbenzene (1-Phenyloctane) forms charge-transfer complexes with fluoranil and 1,3,5-trinitrobenzene.

Storage Class

10 - Combustible liquids

wgk

WGK 3

flash_point_f

224.6 °F - closed cup

flash_point_c

107 °C - closed cup

ppe

Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Yan Yang et al.
Langmuir : the ACS journal of surfaces and colloids, 31(45), 12408-12416 (2015-10-29)
Side chains containing two diacetylene units spaced by an odd number of methylene units exhibit pronounced “bumps” composed of 0.3 nm steps, in opposite directions, at odd and even side-chain positions. In densely packed self-assembled monolayers, the bis-diacetylene bumps stack
Elba Gomar-Nadal et al.
Chemical communications (Cambridge, England), (7)(7), 906-907 (2003-05-13)
The synthesis, isolation and STM imaging on graphite of the cis and trans isomers of a TTF reveal isomer-dependent packing, and constitutes a way to study the non-covalent interactions at play in these systems.
Assemblies at the liquid-solid interface: chirality expression from molecular conformers.
Yong-Tao Shen et al.
Chemphyschem : a European journal of chemical physics and physical chemistry, 14(1), 92-95 (2012-11-13)
Yanqiu Jiang et al.
Scientific reports, 5, 17720-17720 (2015-12-05)
The interface between organic semiconductor and graphene electrode, especially the structure of the first few molecular layers at the interface, is crucial for the device properties such as the charge transport in organic field effect transistors. In this work, we
Xiaodong Chen et al.
Nano letters, 7(11), 3483-3488 (2007-10-05)
Selective adsorption of semiconductor nanocrystals onto an organic self-organized pattern shows a time-dependent behavior. By studying the wetting behavior of delivered solvent (1-phenyloctane) on a lipid self-organized pattern and determining the adhesion energy between semiconductor nanocrystals and substrate, we obtain

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service