Skip to Content
Merck
CN

123943

Bis(4-nitrophenyl) phosphate

99%

Synonym(s):

Di-4-nitrophenyl hydrogenphosphate

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
(O2NC6H4O)2P(O)OH
CAS Number:
Molecular Weight:
340.18
NACRES:
NA.22
PubChem Substance ID:
UNSPSC Code:
12352100
EC Number:
211-434-7
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Bis(4-nitrophenyl) phosphate, 99%

InChI key

MHSVUSZEHNVFKW-UHFFFAOYSA-N

InChI

1S/C12H9N2O8P/c15-13(16)9-1-5-11(6-2-9)21-23(19,20)22-12-7-3-10(4-8-12)14(17)18/h1-8H,(H,19,20)

SMILES string

OP(=O)(Oc1ccc(cc1)[N+]([O-])=O)Oc2ccc(cc2)[N+]([O-])=O

assay

99%

form

solid

mp

172-175 °C (lit.)

functional group

nitro
phosphate

Quality Level

Application

Bis(4-nitrophenyl) phosphate(BNPP) has been used as substrate to determine the enzyme activity of root phosphodiesterases of wetland plants. BNPP has been used to study the mechanism of cleavage of BNPP using oxamido-bridged dinuclear copper(II) complexes as catalysts.

pictograms

Skull and crossbones

signalword

Danger

hcodes

Hazard Classifications

Acute Tox. 2 Oral

Storage Class

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P2 (EN 143) respirator cartridges


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Studies on the reaction kinetics and the mechanism of hydrolysis of bis (4-nitrophenyl) phosphate (BNPP) catalyzed by oxamido-bridged dinuclear copper (II) complexes in micellar solution.
Xie J, et al.
Transition Met. Chem. (London), 28(7), 782-787 (2003)
M P Lim et al.
Cell death & disease, 2, e170-e170 (2011-06-10)
The major cellular event in the development and progression of liver fibrosis is the activation of hepatic stellate cells (HSCs). Activated HSCs proliferate and produce excess collagen, leading to accumulation of scar matrix and fibrotic liver. As such, the induction
Eliska Rejmánková et al.
The New phytologist, 190(4), 968-976 (2011-06-30)
Phosphorus (P)-limited plants produce higher amounts of root phosphatases, but research has mostly focused on phosphomonoesterases (PMEs). Because phosphate diesters can form a significant proportion of organic P in wetlands, we aimed to determine whether wetland plants produce both root
Nele Steens et al.
Dalton transactions (Cambridge, England : 2003), (2)(2), 585-592 (2009-12-22)
Hydrolysis of 4-nitrophenyl phosphate (NPP) and bis-4-nitrophenyl phosphate (BNPP), two commonly used DNA model substrates, was examined in vanadate solutions by means of (1)H, (31)P and (51)V NMR spectroscopy. The hydrolysis of the phosphoester bond in NPP at 50 degrees
M-C Chang et al.
Acta biomaterialia, 8(3), 1380-1387 (2011-09-29)
Biocompatibility of dentin bonding agents (DBA) and composite resin may affect the treatment outcome (e.g., healthy pulp, pulpal inflammation, pulp necrosis) after operative restoration. Bisphenol-glycidyl methacrylate (BisGMA) is one of the major monomers present in DBA and resin. Prior studies

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service