Skip to Content
Merck
CN

131474

1-Phenylpyrrole

99%

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C10H9N
CAS Number:
Molecular Weight:
143.19
NACRES:
NA.22
PubChem Substance ID:
UNSPSC Code:
12352100
EC Number:
211-242-3
MDL number:
Assay:
99%
Form:
solid
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

1-Phenylpyrrole, 99%

InChI key

GEZGAZKEOUKLBR-UHFFFAOYSA-N

InChI

1S/C10H9N/c1-2-6-10(7-3-1)11-8-4-5-9-11/h1-9H

SMILES string

c1ccc(cc1)-n2cccc2

assay

99%

form

solid

bp

234 °C (lit.)

mp

58-60 °C (lit.)

Quality Level

Application

1-Phenylpyrrole was used to study the half-wave potentials of the aqueous redox couples and the oxidation potentials of the monomers in 1,2-dichloroethane.

General description

1-Phenylpyrrole inhibited cytochrome P-450 dependant monooxygenase activity in microsomes from rat liver.

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Formation of oligomers of methyl-and phenyl-pyrrole at an electrified liquid/liquid interface.
Chemical Communications (Cambridge, England), 19, 2163-2164 (1998)
T Viswanathan et al.
Journal of medicinal chemistry, 24(7), 822-830 (1981-07-01)
The inhibitions of cytochrome P-450 dependent monooxygenase activity in microsomes from rat liver by 1-phenylpyrrole, 1-(2-isopropylphenyl)pyrrole, 4(5)-phenylimidazole, and 1-(2-isopropylphenyl)imidazole have been compared. The results establish that the presence of an imidazole N-3 nitrogen substituent is not required to inhibit the
Kangmin Kim et al.
Journal of the American Chemical Society, 141(15), 6279-6291 (2019-03-28)
Amine-peroxide redox polymerization (APRP) has been highly prevalent in industrial and medical applications since the 1950s, yet the initiation mechanism of this radical polymerization process is poorly understood so that innovations in the field are largely empirically driven and incremental.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service