Merck
CN
All Photos(1)

Documents

138622

Sigma-Aldrich

D-(−)-Quinic acid

98%

Sign Into View Organizational & Contract Pricing

Synonym(s):
(-)-Quinic acid, (1alpha,3R,4alpha,5R)-1,3,4,5-Tetrahydroxycyclohexanecarboxylic acid, D-(-)-Quinic acid
Empirical Formula (Hill Notation):
C7H12O6
CAS Number:
Molecular Weight:
192.17
Beilstein:
2212412
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

98%

form

powder

optical activity

[α]20/D −43.9°, c = 11.2 in H2O

SMILES string

O[C@@H]1C[C@@](O)(C[C@@H](O)[C@H]1O)C(O)=O

InChI

1S/C7H12O6/c8-3-1-7(13,6(11)12)2-4(9)5(3)10/h3-5,8-10,13H,1-2H2,(H,11,12)/t3-,4-,5-,7+/m1/s1

InChI key

AAWZDTNXLSGCEK-WYWMIBKRSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

D-(-)-Quinic acid, a plant metabolite, is chiral building block used in multistep chemical synthesis of natural compounds.

Application

D-(−)-Quinic acid can be used as:      
  • A chiral selector electrolyte along with copper(II) sulfate. This electrolyte is utilized in chiral resolution DL-tartaric acid by ligand-exchange capillary electrophoresis method.        
  • A starting material in the synthesis of stereoisomers of 3,4,6-trihydroxyazepanes, 7-hydroxymethyl-3,4,5-trihydroxyazepanes, and 3,4,5-trihydroxyazepanes, as potential inhibitors of glycosidase.        
  • A precursor for the preparation of trihydroxy piperidine derivatives and (+)-proto-quercitol glycosidase inhibitors.

D-(-)-Quinic acid has been used as a standard to determine the composition of organic acids in bitter gentian teas and in developing cranberry fruit by HPLC. It may be used in the preparation of 3,4-O-isopropylidene-3(R),4(S)-dihydroxycyclohexanone.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Tzenge-Lien Shih et al.
The Journal of organic chemistry, 72(11), 4258-4261 (2007-05-08)
Several new stereoisomers of 3,4,6-trihydroxyazepanes and 7-hydroxymethyl-3,4,5-trihydroxyazepanes as well as known 3,4,5-trihydroxyazepanes were synthesized as potent glycosidase inhibitors from D-(-)-quinic acid in an efficient manner. The key step employs dihydroxylation of protected chiral 1,4,5-cyclohex-2-enetriols under RuCl3/NaIO4/phosphate buffer (pH 7) condition
A facile synthesis of a new trihydroxy piperidine derivative and (+)-proto-quercitol from d-(-)-quinic acid
Shih T-L, et al.
Tetrahedron Letters, 45(29), 5751-5754 (2004)
d-(-)-Quinic acid: a chiron store for natural product synthesis
Barco A, et al
Tetrahedron Asymmetry, 8(21), 3515-3545 (1997)
A unified asymmetric approach to substituted hexahydroazepine and 7-azabicyclo [2.2. 1] heptane ring systems from D (-)-quinic acid: Application to the formal synthesis of (-)-balanol and (-)-epibatidine
Albertini E, et al
Tetrahedron Letters, 38(4), 681-684 (1997)
Qiuling Li et al.
G3 (Bethesda, Md.), 6(10), 3351-3359 (2016-08-26)
Drosophila melanogaster is a powerful model organism for dissecting the molecular mechanisms that regulate sleep, and numerous studies in the fly have identified genes that impact sleep-wake cycles. Conditional genetic analysis is essential to distinguish the mechanisms by which these

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service