Skip to Content
Merck
CN

149470

Dimethyl phenylphosphonite

97%, liquid

Synonym(s):

Phenyldimethoxyphosphine, Dimethoxyphenylphosphine

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
C6H5P(OCH3)2
CAS Number:
Molecular Weight:
170.15
NACRES:
NA.22
PubChem Substance ID:
UNSPSC Code:
12352108
EC Number:
220-960-6
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Dimethyl phenylphosphonite, 97%

InChI key

LMZLQYYLELWCCW-UHFFFAOYSA-N

InChI

1S/C8H11O2P/c1-9-11(10-2)8-6-4-3-5-7-8/h3-7H,1-2H3

SMILES string

COP(OC)c1ccccc1

assay

97%

form

liquid

reaction suitability

reaction type: Buchwald-Hartwig Cross Coupling Reaction
reaction type: Heck Reaction
reaction type: Hiyama Coupling
reaction type: Negishi Coupling
reaction type: Sonogashira Coupling
reaction type: Stille Coupling
reaction type: Suzuki-Miyaura Coupling

refractive index

n20/D 1.529 (lit.)

density

1.072 g/mL at 25 °C (lit.)

storage temp.

2-8°C

Quality Level

pictograms

Corrosion

signalword

Danger

hcodes

Hazard Classifications

Eye Dam. 1 - Skin Corr. 1B

Storage Class

8A - Combustible corrosive hazardous materials

wgk

WGK 3

flash_point_f

235.4 °F - closed cup

flash_point_c

113 °C - closed cup

ppe

Faceshields, Gloves, Goggles, type ABEK (EN14387) respirator filter


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Y Shanjani et al.
Biofabrication, 7(4), 045008-045008 (2015-12-20)
Three dimensional (3D) bioprinting is a promising approach to form tissue engineering constructs (TECs) via positioning biomaterials, growth factors, and cells with controlled spatial distribution due to its layer-by-layer manufacturing nature. Hybrid TECs composed of relatively rigid porous scaffolds for
Kai Sun et al.
Stem cells translational medicine, 9(12), 1631-1642 (2020-08-14)
Tissue engineering using adult human mesenchymal stem cells (MSCs) seeded within biomaterial scaffolds has shown the potential to enhance bone healing. Recently, we have developed an injectable, biodegradable methacrylated gelatin-based hydrogel, which was especially effective in producing scaffolds in situ
Scott C Grindy et al.
Soft matter, 13(22), 4057-4065 (2017-05-24)
Control over the viscoelastic mechanical properties of hydrogels intended for use as biomedical materials has long been a goal of soft matter scientists. Recent research has shown that materials made from polymers with reversibly associating transient crosslinks are a promising
Matthew S Rehmann et al.
Biomacromolecules, 18(10), 3131-3142 (2017-08-30)
Hydrogel-based depots are of growing interest for release of biopharmaceuticals; however, a priori selection of hydrogel compositions that will retain proteins of interest and provide desired release profiles remains elusive. Toward addressing this, in this work, we have established a
Pengrui Wang et al.
Advanced healthcare materials, 9(15), e1900977-e1900977 (2019-11-08)
Growth factors (GFs) are critical components in governing cell fate during tissue regeneration. Their controlled delivery is challenging due to rapid turnover rates in vivo. Functionalized hydrogels, such as heparin-based hydrogels, have demonstrated great potential in regulating GF release. While

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service