Skip to Content
Merck
CN

175552

Trichlorosilane

99%

Synonym(s):

Hydrotrichlorosilane, Silicochloroform, Silicon chloride hydride, Trichloromonosilane

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
SiHCl3
CAS Number:
Molecular Weight:
135.45
NACRES:
NA.22
PubChem Substance ID:
UNSPSC Code:
12352101
EC Number:
233-042-5
MDL number:
Assay:
99%
Form:
liquid
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

InChI key

ZDHXKXAHOVTTAH-UHFFFAOYSA-N

InChI

1S/Cl3HSi/c1-4(2)3/h4H

SMILES string

Cl[SiH](Cl)Cl

vapor density

1 (vs air)

vapor pressure

9.75 psi ( 20 °C)

assay

99%

form

liquid

expl. lim.

70 %

bp

32-34 °C (lit.)

density

1.342 g/mL at 25 °C (lit.)

storage temp.

2-8°C

Quality Level

General description

Trichlorosilane is used as a reducing agent in certain chemical reactions or as a starting material for the synthesis of various organosilicon compounds. Trichlorosilane is generally used for the asymmetric hydrosilylation of olefins in the presence of palladium catalysts coordinated with chiral monodentate phosphorus ligands to generate chiral organosilanes.

Application

Trichlorosilane has been used to synthesize 11-dicyclohexylphosphino-12-phenyl-9,10-dihydro-9,10-ethenoanthracene (H-KITPHOS) via reduction of 11-dicyclohexylphosphinoyl-12-phenyl-9,10-dihydro-9,10-ethenoanthracene.
Other possible applications:
  • Asymmetric reduction of N-aryl ketimines in the presence of a novel

L-valine-derived catalyst to form secondary amines.
  • Hydrosilylation of imidazolinones to form chiral imidazolidinones in the presence of a 2,2′-bispyrrolidine based Lewis base organocatalyst.
  • Trichlorosilane activated with chiral N-formylproline

derivatives is an effective reagent for the reduction of imines to form
enantiomerically enriched amines.
  • Trichlorosilane reacts with dimethylformamide to form hypervalent hydridosilicates, which can reduce aldehydes to alcohols, imines to amines, and also for the reductive amination of aldehydes.

signalword

Danger

Storage Class

4.3 - Hazardous materials which set free flammable gases upon contact with water

wgk

WGK 1

flash_point_f

<-2.2 °F - Equilibrium method

flash_point_c

< -19 °C - Equilibrium method

ppe

Faceshields, Gloves, Goggles

Hazard Classifications

Acute Tox. 3 Inhalation - Acute Tox. 4 Oral - Eye Dam. 1 - Flam. Liq. 1 - Skin Corr. 1A - Water-react. 1

Regulatory Information

监管及禁止进口产品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Christophe Blaszykowski et al.
Langmuir : the ACS journal of surfaces and colloids, 28(5), 2318-2322 (2012-01-25)
We report herein three unprecedented alkyltrichlorosilane surface modifiers bearing pentafluorophenyl ester (PFP), benzothiosulfonate (BTS), or novel β-propiolactone (BPL) functionalizable terminal groups. Evidence is provided that these molecules can be prepared in very high purity (as assessed by NMR) through a
New organic activators for the enantioselective reduction of aromatic imines with trichlorosilane
Onomura O
Tetrahedron Letters, 47(22), 3751-3754 (2006)
Yaosi Fang et al.
Advanced science (Weinheim, Baden-Wurttemberg, Germany), 7(13), 2000310-2000310 (2020-07-17)
As an analogue to the vapor-liquid-solid process, the solution-liquid-solid (SLS) method offers a mild solution-phase route to colloidal 1D nanostructures with controlled sizes, compositions, and properties. However, direct growth of 1D nanostructure arrays through SLS processes remains in its infancy.
Wei Ouyang et al.
Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16240-16249 (2019-07-31)
Rapid and reliable detection of ultralow-abundance nucleic acids and proteins in complex biological media may greatly advance clinical diagnostics and biotechnology development. Currently, nucleic acid tests rely on enzymatic processes for target amplification (e.g., PCR), which have many inherent issues
Trinh Lam et al.
Scientific reports, 7(1), 1188-1188 (2017-04-28)
A chemically patterned microfluidic paper-based analytical device (C-µPAD) is developed to create fluidic networks by forming hydrophobic barriers using chemical vapor deposition (CVD) of trichlorosilane (TCS) on a chromatography paper. By controlling temperature, pattern size, and CVD duration, optimal conditions

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service