Product Name
Ascarite®, Sodium hydroxide-coated silica, 20-30 mesh
SMILES string
[Na+].[O-H]
InChI
1S/Na.H2O/h;1H2/q+1;/p-1
InChI key
HEMHJVSKTPXQMS-UHFFFAOYSA-M
form
granular
particle size
20-30 mesh
Quality Level
Looking for similar products? Visit Product Comparison Guide
Related Categories
General description
Ascarite® is sodium hydroxide coated silica mainly used as carbon dioxide adsorbents. It is the second generation of the original Ascarite, which was derived from granular asbestos. Ascarite rapidly and quantitatively adsorbs carbon dioxide, (and acid gases), and is useful in a number of analytical and microanalytical procedures, physiological studies, etc.
Application
Ascarite® can be used as a carbon dioxide (CO2) trap.
Features and Benefits
The material is self-indicating, gradually changing color (to white) within a narrow zone due to the formation of sodium carbonate.
Legal Information
Ascarite is a registered trademark of Arthur H. Thomas Co.
signalword
Danger
hcodes
Hazard Classifications
Eye Dam. 1 - Met. Corr. 1 - Skin Corr. 1A
Storage Class
8B - Non-combustible corrosive hazardous materials
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges
Regulatory Information
危险化学品
This item has
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Reduction of [11C] CO2 to [11C] CO using solid supported zinc.
Dahl K, et al.
Journal of Labelled Compounds & Radiopharmaceuticals, 60(13), 624-628 (2017)
Highly selective iron-based Fischer?Tropsch catalysts activated by CO2-containing syngas
Chun D H, et al.
J. Catal., 317, 135-143 (2014)
Weiqing Liu et al.
Carbohydrate polymers, 93(1), 199-206 (2013-03-08)
Dissolution of waxy corn starch in 1-ethyl-3-methylimidazolium acetate (EMIMAc) was qualitatively studied and compared with gelatinisation process in water. The rheological properties of starch-EMIMAc solutions were investigated in dilute and semi-dilute regions, from 0.1 to 10 wt% over temperature range
J Jayaramudu et al.
Carbohydrate polymers, 93(2), 622-627 (2013-03-19)
The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite
Xin-Cun Yao et al.
Carbohydrate polymers, 94(1), 88-90 (2013-04-03)
Most polysaccharides cannot dissolve in water but can be hydrolysed using hydrogen peroxide (H2O2) to yield a water-soluble product. This study presents a method of preparing water-soluble polysaccharides from peach gum by hydrolysis using H2O2. Extraction was monitored by the
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service