Skip to Content
Merck
CN

250295

1,8-Diiodooctane

98%, contains copper as stabilizer

Synonym(s):

Octamethylene diiodide

Sign In to View Organizational & Contract Pricing

Select a Size


About This Item

Linear Formula:
I(CH2)8I
CAS Number:
Molecular Weight:
366.02
Beilstein:
1735437
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Quality Level

Assay

98%

form

liquid

contains

copper as stabilizer

refractive index

n20/D 1.5653 (lit.)

bp

167-169 °C/6 mmHg (lit.)

density

1.84 g/mL at 25 °C (lit.)

functional group

iodo

SMILES string

ICCCCCCCCI

InChI

1S/C8H16I2/c9-7-5-3-1-2-4-6-8-10/h1-8H2

InChI key

KZDTZHQLABJVLE-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

1,8-Diiodooctane has been employed as processing additive:
  • to improve the morphology and the efficiency of bulk heterojunctions solar cells, based on the regioregular poly(3-hexylthiophene) and a soluble fullerene derivative
  • to improve the power conversion efficiency of polymer solar cells

Hazard Statements

Precautionary Statements

Hazard Classifications

Aquatic Chronic 4

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

235.4 °F - closed cup

Flash Point(C)

113 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jihee Kim et al.
Polymers, 12(11) (2020-11-11)
Photostability of small-molecule (SM)-based organic photovoltaics (SM-OPVs) is greatly improved by utilizing a ternary photo-active layer incorporating a small amount of a conjugated polymer (CP). Semi-crystalline poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) and amorphous poly[(2,5-bis(2-decyltetradecyloxy)phenylene)-alt-(5,6-dicyano-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2CNBT) with similar chemical structures were used for preparing
Ignasi Burgués-Ceballos et al.
ChemSusChem, 8(24), 4209-4215 (2015-12-15)
The application of conjugated materials in organic photovoltaics (OPVs) is usually demonstrated in lab-scale spin-coated devices that are processed under controlled inert conditions. Although this is a necessary step to prove high efficiency, testing of promising materials in air should
Xing Fan et al.
Journal of nanoscience and nanotechnology, 14(5), 3592-3596 (2014-04-17)
Controlling the blend morphology is critical for achieving high power conversion efficiency in polymer/fullerene bulk heterojunction (BHJ) photovoltaic devices. As a simple and effective method to control morphology, adding processing additives has been widely applied in the organic BHJ solar
Wang Li et al.
ACS applied materials & interfaces, 9(32), 27083-27089 (2017-07-27)
The development of simple and water-/alcohol-soluble interfacial materials is crucial for the cost-effective fabrication process of polymer solar cells (PSCs). Herein, highly efficient PSCs are reported employing water-/alcohol-soluble and low-cost rhodamines as cathode interfacial layers (CILs). The results reveal that
Zelin Li et al.
Small (Weinheim an der Bergstrasse, Germany), 14(16), e1704491-e1704491 (2018-03-24)
In recent years, rapid advances are achieved in polymer solar cells (PSCs) using nonfullerene small molecular acceptors. However, no research disclosing the influence of molecular weight (Mn ) of conjugated polymer on the nonfullerene device performance is reported. In this

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service