Merck
CN
All Photos(3)

Documents

Safety Information

256439

Sigma-Aldrich

4,4′-Methylenebis(phenyl isocyanate)

98%

Sign Into View Organizational & Contract Pricing

Synonym(s):
4,4′-MDI, Bis(4-isocyanatophenyl)methane
Linear Formula:
CH2(C6H4NCO)2
CAS Number:
Molecular Weight:
250.25
Beilstein:
797662
EC Number:
MDL number:
PubChem Substance ID:

Quality Level

Assay

98%

form

solid

reaction suitability

reagent type: cross-linking reagent

bp

200 °C/5 mmHg (lit.)

mp

42-45 °C (lit.)

density

1.18 g/mL at 25 °C (lit.)

storage temp.

−20°C

SMILES string

O=C=Nc1ccc(Cc2ccc(cc2)N=C=O)cc1

InChI

1S/C15H10N2O2/c18-10-16-14-5-1-12(2-6-14)9-13-3-7-15(8-4-13)17-11-19/h1-8H,9H2

InChI key

UPMLOUAZCHDJJD-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

4,4′-Methylenebis(phenyl isocyanate) (MDI) is an aromatic diisocyanates class of monomer that is widely used in the production of polyurethane plastics, foam insulation, coatings, adhesives, and sealants. It is highly reactive due to the presence of two isocyanate functional groups. MDI is known for its excellent strength, durability, and resistance to chemical and environmental damage, which makes it useful in resin composition, lithographic printing plates, coating films, optical films, image display devices, semiconductor devices, and polyurethane foam production.

Application

4,4′-Methylenebis(phenyl isocyanate) can be used as a starting material to synthesize:
  • Polyurethane cationomers, that are applicable in medical implants.
  • A prepolymer for preparing self-healable polyurethane elastomers.
It can also be used as a cross-linking agent to synthesize PEBA (polyether-block-amide) copolymer with improved mechanical properties, which are mainly used in soles, medical tubes, aerospace parts, and chemical separation. Additionally, MDI is also used as a crosslinker to covalently modify graphene oxide (GO) and enhance the corrosion resistance of polystyrene coatings. The resultant polystyrene/GO-MDI composite coatings showed superior corrosion resistance to unmodified polystyrene coatings. This approach can potentially be used to improve the durability of materials in various industrial and biomedical applications.

Pictograms

Exclamation markHealth hazard

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Carc. 2 - Eye Irrit. 2 - Resp. Sens. 1 - Skin Irrit. 2 - Skin Sens. 1 - STOT RE 2 Inhalation - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

411.8 °F - closed cup

Flash Point(C)

211 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

危险化学品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Jyun-Yan Ye et al.
Materials (Basel, Switzerland), 14(4) (2021-02-11)
A series of N-substituted polyether-block-amide (PEBA-X%) copolymers were prepared by melt polycondensation of nylon-6 prepolymer and polytetramethylene ether glycol at an elevated temperature using titanium isopropoxide as a catalyst. The structure, thermal properties, and crystallinity of PEBA-X% were investigated using
Journal of Applied Physiology, 70, 6983-6983 (1991)
Polyurethane cationomers synthesised with 4, 4?-methylenebis (phenyl isocyanate), polyoxyethylene glycol and N-methyl diethanolamine
Piotr Krol, et al.
Colloid and Polymer Science, 286, 1111-1122 (2008)
Preparation and Characterization of Isosorbide-Based Self-Healable Polyurethane Elastomers with Thermally Reversible Bonds
Han-Na Kim, et al.
Molecules (Basel), 24 (2019)
Unique foreign body ingestions in the pediatric population.
Sheila Isabelle Goertemoeller et al.
Journal of emergency nursing: JEN : official publication of the Emergency Department Nurses Association, 36(2), 178-179 (2010-03-10)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service