Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
In
CAS Number:
Molecular Weight:
114.82
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12141719
EC Number:
231-180-0
MDL number:
InChI key
APFVFJFRJDLVQX-UHFFFAOYSA-N
InChI
1S/In
SMILES string
[In]
vapor pressure
<0.01 mmHg ( 25 °C)
assay
≥99.999% trace metals basis
form
rod
resistivity
8.37 μΩ-cm
diam.
6 mm
mp
156.6 °C (lit.)
density
7.3 g/mL at 25 °C (lit.)
Quality Level
Looking for similar products? Visit Product Comparison Guide
Preparation Note
20 g = 100 mm
Storage Class
13 - Non Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Vahid A Akhavan et al.
ChemSusChem, 6(3), 481-486 (2013-02-13)
Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed
Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging.
Dawei Deng et al.
Physical chemistry chemical physics : PCCP, 15(14), 5078-5083 (2013-03-02)
Exploring the synthesis and biomedical applications of biocompatible quantum dots (QDs) is currently one of the fastest growing fields of nanotechnology. Hence, in this work, we present a facile approach to produce water-soluble (cadmium-free) quaternary Zn-Ag-In-S (ZAIS) QDs. Their efficient
Ray-Hua Horng et al.
Optics express, 21 Suppl 1, A1-A6 (2013-02-15)
A wing-type imbedded electrodes was introduced into the lateral light emitting diode configuration (WTIE-LEDs) to reduce the effect of light shading of electrode in conventional sapphire-based LEDs (CSB-LEDs). The WTIE-LEDs with double-side roughened surface structures not only can eliminate the
Optical polarization characteristics of semipolar (3031) and (3031) InGaN/GaN light-emitting diodes.
Yuji Zhao et al.
Optics express, 21 Suppl 1, A53-A59 (2013-02-15)
Linear polarized electroluminescence was investigated for semipolar (3031) and (3031) InGaN light-emitting diodes (LEDs) with various indium compositions. A high degree of optical polarization was observed for devices on both planes, ranging from 0.37 at 438 nm to 0.79 at
Hwa Sub Oh et al.
Journal of nanoscience and nanotechnology, 13(1), 564-567 (2013-05-08)
We investigate Ga0.33In0.67P quantum dot structures appropriate for special lighting applications in terms of structural and optical behaviors. The Ga0.33In0.67P materials form from 2-dimentional to 3-dimensional dots as the nominal growth thickness increases from 0.5 nm to 6.0 nm, indicating
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service