Skip to Content
Merck
CN

292753

Pentaethylenehexamine

technical grade

Synonym(s):

3,6,9,12-Tetraazatetradecane-1,14-diamine

Sign In to View Organizational & Contract Pricing

Select a Size


About This Item

Linear Formula:
NH2CH2CH2NH(CH2CH2NH)3CH2CH2NH2
CAS Number:
Molecular Weight:
232.37
Beilstein:
1768042
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

grade

technical grade

refractive index

n20/D 1.5096 (lit.)

solubility

water: soluble 500 g/L at 20 °C

density

0.95 g/mL at 25 °C (lit.)

functional group

amine

SMILES string

NCCNCCNCCNCCNCCN

InChI

1S/C10H28N6/c11-1-3-13-5-7-15-9-10-16-8-6-14-4-2-12/h13-16H,1-12H2

InChI key

LSHROXHEILXKHM-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Pentaethylenehexamine (PEHA) is an acyclic polyamine that can be used to prepare amine-modified adsorbent.

Application

5.Pentaethylenehexamine has been used in the preparation of:
  • polyisobutylene succinimide (PIBSI) dispersants, used as engine oil-additives
  • poly(glycidyl methacrylate) (P(GMA)) homopolymers
  • poly(amidoamine)s

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1 - Skin Corr. 1B - Skin Sens. 1

Storage Class Code

8A - Combustible corrosive hazardous materials

WGK

WGK 2

Flash Point(F)

235.4 °F - closed cup

Flash Point(C)

113 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Pentaethylenehexamine loaded SBA-16 for CO2 capture from simulated flue gas
Liu Y, et al.
Powder Technology, 318, 186-192 (2017)
Gunniya Hariyanandam Gunasekar et al.
Inorganic chemistry, 58(6), 3717-3723 (2019-03-02)
Today, one of the most imperative targets to realize the conversions of CO2 in industry is the development of practically viable catalytic systems that demonstrate excellent activity, selectivity, and durability. Herein, a simple heterogeneous Ru(III) catalyst is prepared by immobilizing
Gas-phase H/D exchange reactions of polyamine complexes:(M+ H)+,(M+ alkali metal+), and (M+ 2H) 2+
Reyzer ML and Brodbelt JS
Journal of the American Society For Mass Spectrometry, 11, 711-721 (2000)
Solmaz Pirouz et al.
The journal of physical chemistry. B, 118(14), 3899-3911 (2014-03-19)
A novel methodology based on fluorescence quenching measurements is introduced to determine quantitatively the amine content of polyisobutylene succinimide (PIBSI) dispersants used as engine oil-additives. To this end, a series of five PIBSI dispersants were prepared by reacting 2 mol
Wiebke Fischer et al.
Macromolecular bioscience, 11(12), 1736-1746 (2011-10-27)
Two photo-responsive core/shell nanoparticles based on hyperbranched polyglycerol (hPG) are synthesized for controlled release of DNA. The shell is composed either of bis-(3-aminopropyl)methylamine (AMPA) or pentaethylenehexamine (PEHA) derivatives and is attached to the hPG core with a photo-responsive o-nitrobenzyl linker.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service