Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Linear Formula:
ClCH2CH2COC6H5
CAS Number:
Molecular Weight:
168.62
UNSPSC Code:
12352100
NACRES:
NA.22
PubChem Substance ID:
EC Number:
213-317-6
Beilstein/REAXYS Number:
2043580
MDL number:
Product Name
3-Chloropropiophenone, 98%
InChI key
KTJRGPZVSKWRTJ-UHFFFAOYSA-N
InChI
1S/C9H9ClO/c10-7-6-9(11)8-4-2-1-3-5-8/h1-5H,6-7H2
SMILES string
ClCCC(=O)c1ccccc1
assay
98%
form
solid
bp
113-115 °C/4 mmHg (lit.)
mp
48-50 °C (lit.)
functional group
chloro
ketone
phenyl
Quality Level
Looking for similar products? Visit Product Comparison Guide
Related Categories
Application
3-Chloropropiophenone was used in the asymmetric reduction of (S)-3-chloro-1-phenylpropanol using preheated Candida utilis cells immobilized in calcium alginate gel beads. It was also used in the synthesis of (R)-3-chloro-1-phenyl-1-propanol via asymmetric reduction using in-situ generated oxazaborolidine catalyst derived from (S)-α,α-diphenylprolinol.
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Gloves, type N95 (US)
Regulatory Information
新产品
This item has
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Asymmetric Synthesis of (R)-Fluoxetine: A Practical Approach Using Recyclable and in-situ Generated Oxazaborolidine Catalyst.
Padiya K, et al.
Chin. J. Chem., 27(6), 1137-1140 (2009)
Yang Gen-Sheng et al.
Biotechnology letters, 31(12), 1879-1883 (2009-07-28)
An efficient method for asymmetric reduction of (S)-3-chloro-1-phenylpropanol from 3-chloropropiophenone was developed using preheated Candida utilis cells immobilized in calcium alginate gel beads. Heating the immobilized cells (bead diameter 1.5 mm) at 45 degrees C for 50 min allowed the
Milada Šírová et al.
Journal of drug targeting, 25(9-10), 796-808 (2017-07-21)
Polymer carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with incorporated organic nitrates as nitric oxide (NO) donors were designed with the aim to localise NO generation in solid tumours, thus highly increasing the enhanced permeability and retention (EPR) effect. The NO
Yu-Chang Liu et al.
Organic & biomolecular chemistry, 13(7), 2146-2152 (2014-12-23)
Styrene monooxygenase (SMO) can catalyze the kinetic resolution of secondary allylic alcohols to provide enantiopure glycidol derivatives. To overcome the low theoretical yield of kinetic resolution, we designed a one-pot two-step enzymatic cascade using prochiral α,β-unsaturated ketones as the substrates.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service