Skip to Content
Merck
CN

349240

Gold

foil, thickness 0.25 mm, ≥99.9% trace metals basis

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
Au
CAS Number:
Molecular Weight:
196.97
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12141717
EC Number:
231-165-9
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Gold, foil, thickness 0.25 mm, ≥99.9% trace metals basis

InChI key

PCHJSUWPFVWCPO-UHFFFAOYSA-N

InChI

1S/Au

SMILES string

[Au]

assay

≥99.9% trace metals basis

form

foil

resistivity

2.05 μΩ-cm, 0°C

thickness

0.25 mm

bp

2808 °C (lit.)

mp

1063 °C (lit.)

density

19.3 g/mL at 25 °C (lit.)

Quality Level

Application

Gold based neutron flux monitors may use gold foils. Au foils may be used to form a AuSn/Au joint system for opto-electronic chips. Modified gold foil electrode may be used to study heterogeneous electron transfer properties of biological electron transfer proteins.3 Electrodeposited polycrystalline palladium-nickel alloy on gold foils may be investigated for the enhanced catalytic behavior of the alloy.

General description

Gold is one of the most popular materials to be used for neutron flux monitoring mainly because it possesses a large thermal cross section for neutron capture (197Au(η, η) 198Au. Gold has the half-life of 2.7 days. Reports show that the rate of dissolution of Au is very fast in SnPb solder.

Preparation Note

3 g = 25 × 25 mm; 12 g = 50 × 50 mm

Storage Class

11 - Combustible Solids

wgk

nwg

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)

Regulatory Information

新产品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Study of wetting reaction between eutectic AuSn and Au foil.
Lai YT and Liu CY
Journal of Electronic Materials, 35, 28-34 (2006)
A kinetic study of oxygen reduction reaction on palladium-nickel alloy surfaces.
Li B, et al.
Electrochemical Society Transactions, 6(25), 139-144 (2008)
Performance and comparison of gold-based neutron flux monitors.
Steinhauser G, et al.
Gold Bulletin, 45, 17-22 (2012)
Young Min Bae et al.
Journal of biomedical nanotechnology, 9(6), 1060-1064 (2013-07-19)
We report on the enhancement of sensitivity of SPR biosensor by modifying the metal surface. A mixture layer, in which gold and dielectric medium coexist, was simply prepared by increasing the roughness of gold surface deposited onto a glass substrate
Yoon-Chae Nah
Journal of nanoscience and nanotechnology, 13(5), 3470-3473 (2013-07-19)
Au nanoparticles and poly(3-hexylthiophene) (P3HT) composite films were prepared by electrodeposition of Au nanoparticles using pulse-current electrodeposition followed by the spin coating of P3HT and their enhanced electrochromic coloration was investigated. A relatively uniformed Au nanoparticle was obtained by the

Articles

Combinatorial Materials Science identifies breakthrough materials through systematic exploration, aiding material discovery.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service