Skip to Content
Merck
CN

357278

Indium

foil, thickness 1.0 mm, 99.999% trace metals basis

Synonym(s):

Indium element

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
In
CAS Number:
Molecular Weight:
114.82
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12141719
EC Number:
231-180-0
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Indium, foil, thickness 1.0 mm, 99.999% trace metals basis

InChI key

APFVFJFRJDLVQX-UHFFFAOYSA-N

InChI

1S/In

SMILES string

[In]

vapor pressure

<0.01 mmHg ( 25 °C)

assay

99.999% trace metals basis

form

foil

resistivity

8.37 μΩ-cm

thickness

1.0 mm

mp

156.6 °C (lit.)

density

7.3 g/mL at 25 °C (lit.)

Quality Level

Looking for similar products? Visit Product Comparison Guide

Preparation Note

4.6 g = 25 × 25 mm

pictograms

Health hazard

signalword

Danger

hcodes

Hazard Classifications

STOT RE 1 Inhalation

target_organs

Lungs

Storage Class

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ching-Hwa Ho et al.
ACS applied materials & interfaces, 5(6), 2269-2277 (2013-03-05)
The surface formation oxide assists of visible to ultraviolet photoelectric conversion in α-In2Se3 hexagonal microplates has been explored. Hexagonal α-In2Se3 microplates with the sizes of 10s to 100s of micrometers were synthesized and prepared by the chemical vapor transport method
Thirumaleshwara N Bhat et al.
Journal of nanoscience and nanotechnology, 13(1), 498-503 (2013-05-08)
The thermal oxidation process of the indium nitride (InN) nanorods (NRs) was studied. The SEM studies reveal that the cracked and burst mechanism for the formation of indium oxide (In2O3) nanostructures by oxidizing the InN NRs at higher temperatures. XRD
V M Katerynchuk et al.
Journal of nanoscience and nanotechnology, 12(11), 8856-8859 (2013-02-21)
The photosensitive In2O3-p-InSe heterostructures in which the In2O3 frontal layer has a nanostructured surface were investigated. The photoresponse spectra of such heterostructures are found to be essentially dependent on surface topology of the oxide. The obtained results indicate that the
Vahid A Akhavan et al.
ChemSusChem, 6(3), 481-486 (2013-02-13)
Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed
Annick Bay et al.
Optics express, 21 Suppl 1, A179-A189 (2013-02-15)
In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is described. The purpose of this overlayer is to improve light extraction into air from the diode's high refractive-index active material. The layer

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service