Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
In
CAS Number:
Molecular Weight:
114.82
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12141719
EC Number:
231-180-0
MDL number:
InChI key
APFVFJFRJDLVQX-UHFFFAOYSA-N
InChI
1S/In
SMILES string
[In]
vapor pressure
<0.01 mmHg ( 25 °C)
assay
≥99.995% trace metals basis
form
foil
resistivity
8.37 μΩ-cm
thickness
0.1 mm
mp
156.6 °C (lit.)
density
7.3 g/mL at 25 °C (lit.)
Quality Level
Looking for similar products? Visit Product Comparison Guide
General description
Indium foil is widely used in nuclear facilities to capture thermal neutrons, because it shows a high cross section of neutron capture reaction. Hence, it may be used in dosemeters to measure exposure. Indium foils were studied for simultaneous monitoring neutron and photon intensities in a reactor core.
Application
Wetting behaviour of eutectic gallium-indium alloys on bare indium foil was investigated.
Preparation Note
1.8 g = 50 × 50 mm; 7.2 g = 100 × 100 mm
signalword
Danger
hcodes
Hazard Classifications
STOT RE 1 Inhalation
target_organs
Lungs
Storage Class
6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Rebecca K Kramer et al.
Langmuir : the ACS journal of surfaces and colloids, 30(2), 533-539 (2013-12-24)
Liquid-embedded elastomer electronics have recently attracted much attention as key elements of highly deformable and "soft" electromechanical systems. Many of these fluid-elastomer composites utilize liquid metal alloys because of their high conductivities and inherent compliance. Understanding how these alloys interface
Activation detection using indium foils for simultaneous monitoring neutron and photon intensities in a reactor core.
Chao JH and Chiang AC
Radiation Measurements, 45, 1024-1033 (2010)
Recalibration of Indium foil for personnel screening in criticality accidents
Takada C, et al.
Radiation Protection Dosimetry, 144(1-4), 575-579 (2010)
Juan Zhou et al.
Chemical communications (Cambridge, England), 49(22), 2237-2239 (2013-02-12)
A reduced graphene oxide (RGO)-ZnIn(2)S(4) nanosheet composite was successfully synthesized via an in situ controlled growth process. The as-obtained RGO-ZnIn(2)S(4) composite showed excellent visible light H(2) production activity in the absence of noble metal cocatalysts.
Vahid A Akhavan et al.
ChemSusChem, 6(3), 481-486 (2013-02-13)
Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service