378429
Silicone oil
viscosity 30,000 cSt (25 °C)
Sign Into View Organizational & Contract Pricing
Select a Size
About This Item
Linear Formula:
[-Si(CH3)2O-]n
CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23
vapor density
>1 (vs air)
vapor pressure
<5 mmHg ( 25 °C)
5 mmHg ( 20 °C)
form
viscous liquid
refractive index
n20/D 1.403 (lit.)
viscosity
30,000 cSt(25 °C)
bp
>140 °C/0.002 mmHg (lit.)
density
0.971 g/mL at 25 °C
Looking for similar products? Visit Product Comparison Guide
Related Categories
Storage Class Code
10 - Combustible liquids
WGK
WGK 1
Flash Point(F)
214.0 °F - closed cup
Flash Point(C)
101.1 °C - closed cup
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Karthik R Balakrishnan et al.
Lab on a chip, 13(7), 1302-1307 (2013-02-07)
Resistive-pulse sensing (RPS), which is based on measuring the current pulse produced when a single particle transits a pore or channel, is an extremely versatile technique used to determine the size and concentration of cells and viruses and to detect
Yuwei Liu et al.
Langmuir : the ACS journal of surfaces and colloids, 29(9), 2897-2905 (2013-02-12)
Poly(dimethylsiloxane) (PDMS) materials have been extensively shown to function as excellent fouling-release (FR) coatings in the marine environment. The incorporation of biocide moieties, such as quaternary ammonium salts (QAS), can impart additional antibiofouling properties to PDMS-based FR coating systems. In
Florent Badique et al.
Biomaterials, 34(12), 2991-3001 (2013-01-30)
We have recently demonstrated strong nuclear deformation of SaOs-2 osteosarcoma cells on poly-L-lactic acid (PLLA) micropillar substrates. In the present study, we first demonstrated that chemical and mechanical properties of the micropillar substrates have no dominant effect on deformation. However
Sung-Jin Kim et al.
Lab on a chip, 13(8), 1644-1648 (2013-02-23)
We present experiments and theory of a constant flow-driven microfluidic oscillator with widely tunable oscillation periods. This oscillator converts two constant input-flows from a syringe pump into an alternating, periodic output-flow with oscillation periods that can be adjusted to between
Kristina Kreppenhofer et al.
Langmuir : the ACS journal of surfaces and colloids, 29(11), 3797-3804 (2013-02-23)
Here we demonstrate the generation of polymer monolithic surfaces possessing a gradient of pore and polymer globule sizes from ~0.1 to ~0.5 μm defined by the composition of two polymerization mixtures injected into a microfluidic chip. To generate the gradient
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service