Merck
CN
All Photos(3)

Documents

400939

Sigma-Aldrich

Lithium titanate

greener alternative

−80 mesh

Sign Into View Organizational & Contract Pricing

Synonym(s):
LTO
Linear Formula:
Li2TiO3
CAS Number:
Molecular Weight:
109.75
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

form

powder

Quality Level

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

particle size

−80 mesh

greener alternative category

SMILES string

[Li+].[Li+].[O-][Ti]([O-])=O

InChI

1S/2Li.3O.Ti/q2*+1;;2*-1;

InChI key

GLUCAHCCJMJHGV-UHFFFAOYSA-N

General description

Lithium titanate (LTO) (-80 mesh) is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

Lithium titanate (LTO) can be used as an anode material, which shows an ion conductivity of 10−3 Scm−1 at room temperature. It can also be used as an alternative to conventional graphite materials. LTO can further be used in the fabrication of high-performance lithium-ion batteries for electric vehicles (EVs).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Desiree Camara Miraldo et al.
Motor control, 1-13 (2020-08-19)
This study describes an open data set of inertial, magnetic, foot-ground contact, and electromyographic signals from wearable sensors during walking at different speeds. These data were acquired from 22 healthy adults using wearable sensors and walking at self-selected comfortable, fast
Arailym Nurpeissova et al.
Nanomaterials (Basel, Switzerland), 10(10) (2020-10-15)
Low dimensional Si-based materials are very promising anode candidates for the next-generation lithium-ion batteries. However, to satisfy the ever-increasing demand in more powerful energy storage devices, electrodes based on Si materials should display high-power accompanied with low volume change upon
Man Huang et al.
Small (Weinheim an der Bergstrasse, Germany), 16(33), e2001391-e2001391 (2020-07-21)
The fast development of electrochemical energy storage devices necessitates rational design of the high-performance electrode materials and systematic and deep understanding of the intrinsic energy storage processes. Herein, the preintercalation general strategy of alkali ions (A = Li+ , Na+
Ling Ding et al.
ACS applied materials & interfaces (2020-11-18)
Electrode materials with a high performance and stable cycling have been commercialized, but the utilization of state-of-the-art Li-ion batteries in high-current rate applications is restricted because of limitations in other battery components, in particular, the lack of an efficient binder.
Woo Jin Hyun et al.
ACS nano, 13(8), 9664-9672 (2019-07-19)
Solid-state electrolytes based on ionic liquids and a gelling matrix are promising for rechargeable lithium-ion batteries due to their safety under diverse operating conditions, favorable electrochemical and thermal properties, and wide processing compatibility. However, gel electrolytes also suffer from low

Articles

Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE).

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

Professor Qiao’s laboratory lays out recent advances in conversion type lithium metal fluoride batteries. This review explores key concepts in developing electrochemically stable microstructures for wide Li-ion insertion channels.

Recent demand for electric and hybrid vehicles, coupled with a reduction in prices, has caused lithium-ion batteries (LIBs) to become an increasingly popular form of rechargeable battery technology.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service