Merck
CN
All Photos(1)

Documents

475629

Sigma-Aldrich

Poly(ethylene glycol) diacrylate

average Mn 250

Sign Into View Organizational & Contract Pricing

Synonym(s):
PEG diacrylate
CAS Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

mol wt

average Mn 250

Quality Level

contains

100 ppm MEHQ as inhibitor

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

refractive index

n20/D 1.463

density

1.11 g/mL at 25 °C

Ω-end

acrylate

α-end

acrylate

polymer architecture

shape: linear
functionality: homobifunctional

storage temp.

2-8°C

SMILES string

OCCO.OC(=O)C=C

InChI

1S/C8H10O4/c1-3-7(9)11-5-6-12-8(10)4-2/h3-4H,1-2,5-6H2

InChI key

KUDUQBURMYMBIJ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Poly(ethylene glycol) diacrylate (PEGDA) is a polyethylene glycol (PEG) based material that can be used for a variety of tissue engineering and drug delivery based applications. It is majorly used as a prepolymer solution that can be used in the formation of a cross-linked polymeric system.

Application

PEGDA can be used in the formation of a UV-cured membrane for potential usage in the separation of carbon dioxide (CO2) based gases. It may also be used in the development of novel injectable biodegradable polymers for a variety of biomedical applications.

Pictograms

CorrosionExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Skin Irrit. 2 - Skin Sens. 1

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO2 separation
Kwisnek L, et al.
Journal of Membrane Science , 369(1-2), 429-436 (2011)
Injectable biodegradable polymer composites based on poly (propylene fumarate) crosslinked with poly (ethylene glycol)-dimethacrylate
He S, et al.
Biomaterials, 21(23), 2389-2394 (2000)
Release of protein from highly cross-linked hydrogels of poly (ethylene glycol) diacrylate fabricated by UV polymerization
Mellott MB, et al.
Biomaterials, 22(9), 929-941 (2001)
Preparation and characterization of crosslinked poly (ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials
Ju H, et al.
Journal of Membrane Science , 330(1-2), 180-188 (2009)
Dibakar Mondal et al.
Journal of the mechanical behavior of biomedical materials, 104, 103653-103653 (2020-03-17)
In this study, single filaments of acrylated epoxidized soybean oil (AESO)/polyethylene glycol diacrylate (PEGDA)/nanohydroxyapatite (nHA)-based nanocomposites intended for bone defect repair have displayed significant improvement of their mechanical properties when extruded through smaller needle gauges before UV curing. These nanocomposite

Articles

2D and 3D scaffold patterning techniques can be applied in the presence of cells using poly(ethylene glycol) (PEG)-based hydrogels. These methods can be applied to any optically transparent, photoactive substrate.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service