Merck
CN
All Photos(1)

Documents

475696

Sigma-Aldrich

Poly(ethylene glycol) diglycidyl ether

average Mn 500

Sign Into View Organizational & Contract Pricing

Synonym(s):
Diepoxy PEG, PEG diglycidyl ether, Polyoxyethylene bis(glycidyl ether)
Linear Formula:
C3H5O2-(C2H4O)n-C3H5O
CAS Number:
NACRES:
NA.23

mol wt

average Mn 500

reaction suitability

reagent type: cross-linking reagent
reactivity: amine reactive

refractive index

n20/D 1.47

Ω-end

glycidyl

α-end

glycidyl

polymer architecture

shape: linear
functionality: homobifunctional

storage temp.

2-8°C

InChI

1S/C8H14O4/c1(9-3-7-5-11-7)2-10-4-8-6-12-8/h7-8H,1-6H2

InChI key

AOBIOSPNXBMOAT-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Poly(ethylene glycol) diglycidyl ether (PEGDGE) shows highly solubility in water. Hence, it easily undergoes hydrolysis followed by ring cleavage reaction in aqueous solution, yielding hydroxyl group. PEGDGE combines with proteins covalently or non-covalently. PEGDGE is widely used in chemical industries for cross linking and surface modifier.

Application

The high solubility of PEGDGE has been successfully employed to immobilize glucose oxidase, d-amino acid oxidase and glutamate oxidase. It may be used as a component for the development of microelectrode biosensors to detect hydrogen peroxide and nitric oxide.

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

386.6 °F - closed cup

Flash Point(C)

197.00 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

High performance organic solvent nanofiltration membranes: Development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs)
Fritsch D, et al.
Journal of Membrane Science, 401, 222-231 (2012)
Direct electrochemistry and electrocatalysis of hemoglobin on a glassy carbon electrode modified with poly (ethylene glycol diglycidyl ether) and gold nanoparticles on a quaternized cellulose support. A sensor for hydrogen peroxide and nitric oxide.
Li F,et al.
Microchimica Acta, 1-9 (2014)
Dilu G Mathew et al.
Nano letters, 20(2), 820-828 (2019-09-20)
Tumor-derived extracellular vesicles (tdEVs) are attracting much attention due to their essential function in intercellular communication and their potential as cancer biomarkers. Although tdEVs are significantly more abundant in blood than other cancer biomarkers, their concentration compared to other blood
Oylum Colpankan Gunes et al.
Journal of biomaterials applications, 35(4-5), 515-531 (2020-07-01)
The objective of the study was to produce three-dimensional and porous nanofiber reinforced hydrogel scaffolds that can mimic the hydrated composite structure of the cartilage extracellular matrix. In this regard, wet-electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofiber reinforced carboxymethyl chitosan-silk fibroin (PNFs/CMCht-SF) hydrogel

Articles

2D and 3D scaffold patterning techniques can be applied in the presence of cells using poly(ethylene glycol) (PEG)-based hydrogels. These methods can be applied to any optically transparent, photoactive substrate.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service