Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
C
CAS Number:
Molecular Weight:
12.01
UNSPSC Code:
12352103
EC Number:
231-953-2
NACRES:
NA.23
MDL number:
Product Name
Diamond, synthetic monocrystalline powder, ≤1 μm
form
synthetic monocrystalline powder
particle size
≤1 μm
density
3.5 g/mL at 25 °C (lit.)
application(s)
battery manufacturing
Quality Level
Looking for similar products? Visit Product Comparison Guide
Application
Monocrystalline diamond particles internalized in human endothelial cells have potential applications in drug delivery.
Storage Class
11 - Combustible Solids
wgk
nwg
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Gloves, type N95 (US)
Regulatory Information
监管及禁止进口产品
This item has
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Micron-sized diamond particles are internalized by endothelial cells.
Walkowiak B, et al.
Diamond and Related Materials, 18, 651-656 (2009)
Pontus Forsberg et al.
Optics express, 21(3), 2693-2700 (2013-03-14)
Control of the sidewall angle of diamond microstructures was achieved by varying the gas mixture, bias power and mask shape during inductively coupled plasma etching. Different etch mechanisms were responsible for the angle of the lower and upper part of
Mikhail V Korobov et al.
Nanoscale, 5(4), 1529-1536 (2013-01-15)
Detonation nanodiamond (ND) is a suitable source material to produce unique samples consisting of almost uniform diamond nanocrystals (d = 3-5 nm). Such samples exist in the form of long stable aqueous dispersions with narrow size distribution of diamond particles.
Brian McCall et al.
Optics express, 21(3), 3557-3572 (2013-03-14)
A novel method for fabricating lens arrays and other non-rotationally symmetric free-form optics is presented. This is a diamond machining technique using 4 controlled axes of motion - X, Y, Z, and C. As in 3-axis diamond micro-milling, a diamond
Jayakumar Shalini et al.
Nanoscale, 5(3), 1159-1167 (2013-01-05)
Significant difference was observed for the simultaneous detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA) mixture using nitrogen incorporated diamond nanowire (DNW) film electrodes grown by microwave plasma enhanced chemical vapor deposition. For the simultaneous sensing of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service