484164
Carbon
glassy, spherical powder, 2-12 μm, 99.95% trace metals basis
Synonym(s):
Carbon
Select a Size
About This Item
Quality Level
Assay
99.95% trace metals basis
form
glassy, spherical powder
mol wt
Mw 12.011 g/mol
composition
C
particle size
2-12 μm
density
1.8-2.1 g/cm3
application(s)
battery manufacturing
SMILES string
[C]
InChI
1S/C
InChI key
OKTJSMMVPCPJKN-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Related Categories
General description
Application
•High-Temperature Applications: as Crucibles, as Furnace Components; as Thermocouple Protection.
•Semiconductor Industry: as Wafer Handling (wafer holders and susceptors); as durable electrode material for plasma etching and ion implantation.
•Biomedical Applications: as load-bearing joints and dental implants; as Scaffold material for Tissue Engineering.
•Other Applications: Antistatic Agent (prevents static electricity buildup in packaging); Molding Materials (precision and glass molding); as Fuel Cell Electrodes.
Features and Benefits
•Electrical Conductivity: Excellent conductivity (700Scm-1) makes it ideal for electrochemical applications.
•Chemical Inertness: High resistance to chemical reactions enhances durability in harsh environments.
•High-Temperature Resistance and low thermal expansion: Can withstand temperatures up to 3000°C, suitable for high-temperature applications. •Biocompatibility: Safe for use in biomedical applications, particularly in prosthetics and tissue engineering.
•Tailorable Properties: Customizable properties through heat treatment and surface modifications.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Don't see the Right Version?
If you require a particular version, you can look up a specific certificate by the Lot or Batch number.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Articles
Recent demand for electric and hybrid vehicles, coupled with a reduction in prices, has caused lithium-ion batteries (LIBs) to become an increasingly popular form of rechargeable battery technology.
Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.
Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service