Skip to Content
Merck
CN

560030

Sigma-Aldrich

Zirconium(IV) tert-butoxide

electronic grade, 99.999% trace metals basis

Synonym(s):

Tetra-tert-butoxyzirconium, ZTB, Zirconium tert-butanolate, Tetra-tert-butyl zirconate

Sign Into View Organizational & Contract Pricing

Select a Size


About This Item

Linear Formula:
Zr[OC(CH3)3]4
CAS Number:
Molecular Weight:
383.68
Beilstein:
3681870
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

grade

electronic grade

Quality Level

Assay

99.999% trace metals basis

form

liquid

reaction suitability

core: zirconium
reagent type: catalyst

refractive index

n20/D 1.424 (lit.)

bp

81 °C/3 mmHg (lit.)

density

0.985 g/mL at 25 °C (lit.)

SMILES string

CC(C)(C)O[Zr](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C

InChI

1S/4C4H9O.Zr/c4*1-4(2,3)5;/h4*1-3H3;/q4*-1;+4

InChI key

BGGIUGXMWNKMCP-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Zirconium(IV) tert-butoxide, electronic grade (99.999% trace metals basis), is a high-purity, moisture-sensitive organometallic compound widely used as a catalyst and as a precursor for solution and vapor deposition processes, especially in the fabrication of energy materials and advanced ceramics. Its exceptional purity makes it ideal for applications in microelectronics, catalysis, and the synthesis of high-performance inorganic materials.

Application

Zirconium(IV) tert-butoxide can be used as:
  • A precursor in sol-gel processes to synthesize porous zirconia, which is widely used for catalyst supports and advanced materials applications.
  • A precursor that enables the efficient deposition of high-purity zirconium oxide thin films under atmospheric pressure plasma conditions, making it suitable for advanced electronic and optical applications.
  • A precursor in the green synthesis of N/Zr co-doped TiO₂ nanoparticles for enhanced photocatalytic degradation of p-nitrophenol (PNP).

Features and Benefits

  • High Purity and Low Total Metallic Impurities: Suitable for sensitive applications due to low impurity content and absence of residual chloride
  • Moisture Sensitivity: Highly sensitive to moisture; must be handled under inert atmosphere
  • Reactivity: Readily hydrolyzes to form zirconia (ZrO₂) or mixed oxides

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

183.2 °F - closed cup

Flash Point(C)

84 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Efficient preparation of Ellman?s imines from trifluoromethyl ketones promoted by zirconium(IV) tert-butoxide
Kawanami T, et al.
Tetrahedron Letters, 54(52), 7202-7205 (2013)
Fabrication of zirconium oxide coatings on stainless steel by a combined laser/sol?gel technique.
Adraider Y, et al.
Ceramics International, 39(8), 9665-9670 (2013)

Articles

Continuous efficiency improvements in photovoltaic devices result from material advancements and manufacturing innovation.

Nanomaterials are considered a route to the innovations required for large-scale implementation of renewable energy technologies in society to make our life sustainable.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service