Skip to Content
Merck
CN

633216

5,5′′′′′-Dihexyl-2,2′:5′,2′′:5′′,2′′′:5′′′,2′′′′:5′′′′,2′′′′′-sexithiophene

electron donor for OPV devices

Synonym(s):

α,ω-Dihexylsexithiophene, DH-6T

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C36H38S6
CAS Number:
Molecular Weight:
663.08
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352103
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

OPV device performance

ITO/DH6T/PC61BM/Al

  • Short-circuit current density (Jsc): 0.027 mA/cm2
  • Open-circuit voltage (Voc): 0.18 V
  • Fill Factor (FF): 0.33
  • Power Conversion Efficiency (PCE): 0.002 %
, ITO/PEDOT:PSS/DH6T/PC61BM/Al
  • Short-circuit current density (Jsc): 0.04 mA/cm2
  • Open-circuit voltage (Voc): 0.24 V
  • Fill Factor (FF): 0.36
  • Power Conversion Efficiency (PCE): 0.004 %
, ITO/PEDOT:PSS/DH6T:PC61BM (1:1)/Al
  • Short-circuit current density (Jsc): 0.097 mA/cm2
  • Open-circuit voltage (Voc): 0.36 V
  • Fill Factor (FF): 0.24
  • Power Conversion Efficiency (PCE): 0.01 %

InChI

1S/C36H38S6/c1-3-5-7-9-11-25-13-15-27(37-25)29-17-19-31(39-29)33-21-23-35(41-33)36-24-22-34(42-36)32-20-18-30(40-32)28-16-14-26(38-28)12-10-8-6-4-2/h13-24H,3-12H2,1-2H3

SMILES string

CCCCCCc1ccc(s1)-c2ccc(s2)-c3ccc(s3)-c4ccc(s4)-c5ccc(s5)-c6ccc(CCCCCC)s6

InChI key

QCMASTUHHXPVGT-UHFFFAOYSA-N

form

solid

mp

280 °C (dec.) (lit.)

solubility

chlorobenzene: soluble (soluble), chloroform: slightly soluble, methylene chloride: slightly soluble

orbital energy

HOMO 5.2 eV , LUMO 2.9 eV 

semiconductor properties

P-type (mobility=0.13 cm2/V·s)

General description

5,5′′′′′-Dihexyl-2,2′:5′,2′′:5′′,2′′′:5′′′,2′′′′:5′′′′,2′′′′′-sexithiophene (DH6T) is an alkyl substituted oligothiophene that can be used as an organic semiconductor. It has a field mobility of 1 cm2/Vs that makes it a suitable active layered material in electronic and optoelectronic applications.

Application

DH6T can be used as a p-type donor molecule for the fabrication of organic electronic devices such as organic field effect transistors (OFETs), thin film transistors (TFTs) and organic solar cells (OSCs).

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Photovoltaic performance of organic solar cells based on DH6T/PCBM thin film active layers
Muhammad FF and Sulaiman K
Thin Solid Films, 519(15), 5230-5233 (2011)
Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors
Halik M, et al.
Advanced Materials, 15(11), 917-922 (2003)
All organic near ultraviolet photodetectors based on bulk hetero-junction of P3HT and DH6T
Shalu C, et al.
Semiconductor Science and Technology, 33(9), 095021-095021 (2018)
High Hole Mobility and Thickness-Dependent Crystal Structure in alpha, omega-Dihexylsexithiophene Single-Monolayer Field-Effect Transistors
Mannebach EM, et al.
Advances in Functional Materials, 23(5), 554-564 (2013)
Photovoltaic performance of organic solar cells based on DH6T/PCBM thin film active layers
Muhammad, F. F.; et al.
Thin Solid Films, 519, 5230-5233 (2011)

Articles

Oligothiophenes are important organic electronic materials which can be produced using synthetic intermediates and Suzuki coupling.

Solution-processed organic photovoltaic devices (OPVs) have emerged as a promising clean energy generating technology due to their ease of fabrication, potential to enable low-cost manufacturing via printing or coating techniques, and ability to be incorporated onto light weight, flexible substrates.

Thin, lightweight, and flexible electronic devices meet widespread demand for scalable, portable, and robust technology.

Organic materials in optoelectronic devices like LEDs and solar cells are of significant academic and commercial interest.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service