Skip to Content
Merck
CN

63797

Sigma-Aldrich

(3-Mercaptopropyl)triethoxysilane

≥80% (GC), technical

Synonym(s):

3-Triethoxysilyl-1-propanethiol

Sign Into View Organizational & Contract Pricing

Select a Size


About This Item

Linear Formula:
HS(CH2)3Si(OCH2CH3)3
CAS Number:
Molecular Weight:
238.42
Beilstein:
2039575
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.22
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

grade

technical

Assay

≥80% (GC)

density

0.987 g/mL at 20 °C (lit.)

functional group

thiol

storage temp.

2-8°C

SMILES string

CCO[Si](CCCS)(OCC)OCC

InChI

1S/C9H22O3SSi/c1-4-10-14(11-5-2,12-6-3)9-7-8-13/h13H,4-9H2,1-3H3

InChI key

DCQBZYNUSLHVJC-UHFFFAOYSA-N

General description

3-mercaptopropyl trimethoxysilane (MPTMS) is commonly used in surface modification of silica nanoparticles by creating thiol group on the surface.

Application

(3-Mercaptopropyl)triethoxysilane (MPTS) can be used as a reagent to prepare thiol functionalized materials. Silica, SBA-15, alumina, starch, and graphene can be functionalized with MPTS and used in various applications.
MPTS functionalized SBA-15 probe is used to determine dissolved mercury in solution.

Pictograms

Environment

Hazard Statements

Precautionary Statements

Hazard Classifications

Aquatic Chronic 2

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

190.4 °F - closed cup

Flash Point(C)

88 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ning Gan et al.
International journal of nanomedicine, 6, 3259-3269 (2012-01-10)
The purpose of this study was to devise a novel electrochemical immunosensor for ultrasensitive detection of alfa-fetoprotein based on Fe(3)O(4)/Au nanoparticles as a carrier using a multienzyme amplification strategy. Greatly enhanced sensitivity was achieved using bioconjugates containing horseradish peroxidase (HRP)
Greg J Nusz et al.
ACS nano, 3(4), 795-806 (2009-03-20)
We present the development of an analytical model that can be used for the rational design of a biosensor based on shifts in the local surface plasmon resonance (LSPR) of individual gold nanoparticles. The model relates the peak wavelength of
Zidan Wang et al.
Nanoscale, 10(11), 5335-5341 (2018-03-07)
A novel zwitterionic hydrophilic magnetic mesoporous silica was prepared for endogenous glycopeptide enrichment prior to MS analysis. For the first time, the material was successfully applied in capturing endogenous glycopeptides from human saliva, indicating great potential of this strategy for
Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods
He F-A, et al.
Nanoscale, 3(3), 1182-1188 (2011)
Electroless copper deposition on (3-mercaptopropyl) triethoxysilane-coated silica and alumina nanoparticles
Mondin G, et al.
Electrochimica Acta, 114, 521-526 (2013)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service